
Multigrid on the outside: restructuring
time integration and adaptivity

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)
Collaborators in this work:

Debojyoti Ghosh (ANL), Mark Adams (LBL), Matt Knepley (UChicago)

Berkeley Lab, 2014-01-16



Outline

Fast solvers for Implicit Runge-Kutta
The memory bandwidth problem
Implicit Runge-Kutta
Tensor product algebra

τ-adaptivity and multigrid compression
Reducing communication and memory bandwidth
Local recovery and postprocessing



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor Bandwidth (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 43 205 4.8
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6



Optimizing Sparse Mat-Vec

Order unknowns so vector reuses cache (Cuthill-McKee)
Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
Usually improves strength of ILU and SOR

Coalesce indices for adjacent rows (Inodes)
Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/i
Can do block SOR (much stronger than scalar SOR)
Default in PETSc, turn off with -mat_no_inode
Requires ordering unknowns so that fields are interlaced, this is
(much) better for memory use anyway

Use explicit blocking, hold one index per block (BAIJ format)

Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/b2

Block SOR and factorization
Symbolic factorization works with blocks (much cheaper)
Very regular memory access, unrolled dense kernels
Faster insertion: MatSetValuesBlocked()



This is a dead end

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix)



This is a dead end

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix)



Attempt: s-step methods in 3D

102 103 104 105

dofs/process

102

103

104

105

106
work

p = 1

p = 1, s = 2

p = 2, s = 3

p = 2, s = 5

102 103 104 105

dofs/process

102

103

104

105

106
memory

p = 1

p = 2

p = 2, s = 3

p = 2, s = 5

102 103 104 105

dofs/process

102

103

104

105

106
communication

p = 1

p = 2

p = 2, s = 3

p = 2, s = 5

Amortizing message latency is most important for strong-scaling
s-step methods have high overhead for small subdomains
Limited choice of preconditioners (none optimal, surface/volume)



Attempt: space-time methods (multilevel
SDC/Parareal)

PFASST algorithm (Emmett and Minion, 2013)
Zero-latency messages (cf. performance model of s-step)
Spectral Deferred Correction: iterative, converges to IRK (Gauss,
Radau, . . . )
Stiff problems use implicit basic integrator (synchronizing on spatial
communicator)



Problems with SDC and time-parallel

256 512 1K 2K 4K 8K 16K 32K 64K 112K 224K 448K
number of cores

1
2
4
8

16
32
64

128
256448
896

1792
sp

ee
du

p
ideal
PFASST (theory)
PMG+SDC (fine)
PMG+SDC (coarse)
PMG+PFASST

256 512 1K 2K 4K 8K 16K 32K 64K 112K 224K 448K
number of cores

0.0
0.2
0.4
0.6
0.8
1.0

re
l. 

ef
fic

ie
nc

y PMG
PMG+PFASST

c/o Matthew Emmett, parallel compared to sequential SDC
Number of iterations is not uniform, efficiency starts low
Arithmetic intensity unchanged
Parabolic space-time (Greenwald and Brandt/Horton and
Vandewalle)



Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass


︸ ︷︷ ︸

A

F

y1
...

ys


un+1 = bT Y

General framework for one-step methods

Diagonally implicit: A lower triangular, stage order ≤ 2

Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order ≤ 1

If A is a general full matrix, all stages are coupled, “implicit RK”



Implicit Runge-Kutta
1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 −

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Implicit Runge-Kutta methods have excellent accuracy and stability
properties
Gauss methods with s stages

order 2s, (s,s) Padé approximation to the exponential
A-stable, symplectic

Radau (IIA) methods with s stages
order 2s−1, A-stable, L-stable

Lobatto (IIIC) methods with s stages
order 2s−2, A-stable, L-stable, self-adjoint

Stage order s or s + 1



Method of Butcher (1976) and Bickart (1977)

Newton linearize Runge-Kutta system

Y = un + hAF(Y )

Solve linear system with tensor product operator

S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse

SDC (2000) is Gauss-Seidel with low-order corrector
Butcher/Bickart method: diagonalize S = XΛX−1

Λ⊗ In + Is⊗ J

s decoupled solves

Problem: X is exponentially ill-conditioned wrt. s



MatTAIJ: “sparse” tensor product matrices

G = In⊗S + J⊗T

More general than multiple RHS (multivectors)

Compare to multiple right hand sides in row-major

Runge-Kutta systems have T = Is (permuted from Butcher method)

Stream J through cache once, same efficiency as multiple RHS



Blue Gene/Q test

128 nodes, 16 procs/node, small diffusion problem, CG/Jacobi solver

Method order nsteps time

Gauss 4 8 10 3.4345e-01
Gauss 2 4 20 7.6320e-01
Gauss 1 2 40 1.1052e+00



Calibration and accuracy

Splitting errors plague multi-physics simulation
Verlet (leapfrog) integration is popular: symplectic and cheap

Stability problems: damping and even/odd decoupling

Models calibrated to compensate
Force parametrizations in molecular dynamics
Atmospheric column physics



c/o Peter Caldwell (LLNL)

Models calibrated for “efficient” time step
Not longer solving the PDEs we write down
Many FTE-years to recalibrate when discretization changes
Calibration eats up a big chunk of the IPCC policy timeline



Implicit Runge-Kutta for advection

Table : Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

Naive centered-difference discretization



Toward AMG for IRK/tensor-product systems

Start with R̂ = R⊗ Is, P̂ = P⊗ Is

Gcoarse = R̂(In⊗S + J⊗ Is)P̂

Imaginary component slows convergence

Idea: incrementally rotate eigenvalues toward
real axis on coarse levels
Enlangga and Nabben On a multilevel Krylov
method for the Helmholtz equation
preconditioned by shifted Laplacian



Outline

Fast solvers for Implicit Runge-Kutta
The memory bandwidth problem
Implicit Runge-Kutta
Tensor product algebra

τ-adaptivity and multigrid compression
Reducing communication and memory bandwidth
Local recovery and postprocessing



Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by defining
a hierarchy of scale. A multigrid method is constructed from:

1 a series of discretizations
coarser approximations of the original problem
constructed algebraically or geometrically

2 intergrid transfer operators
residual restriction IH

h (fine to coarse)
state restriction ÎH

h (fine to coarse)
partial state interpolation Ih

H (coarse to fine, ‘prolongation’)
state reconstruction Ih

H (coarse to fine)

3 Smoothers (S)
correct the high frequency error components
Richardson, Jacobi, Gauss-Seidel, etc.
Gauss-Seidel-Newton or optimization methods



τ formulation of Full Approximation Scheme (FAS)
classical formulation: “coarse grid accelerates fine grid↘↗
τ formulation: “fine grid feeds back into coarse grid”↗↘
To solve Nu = f , recursively apply

pre-smooth ũh← Sh
pre(uh

0 , f
h)

solve coarse problem for uH NHuH = IH
h f h︸︷︷︸
f H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

correction and post-smooth uh← Sh
post

(
ũh + Ih

H(uH − ÎH
h ũh), f h

)
IH
h residual restriction ÎH

h solution restriction
Ih
H solution interpolation f H = IH

h f h restricted forcing
{Sh

pre,S
h
post} smoothing operations on the fine grid

At convergence, uH∗ = ÎH
h uh∗ solves the τ-corrected coarse grid

equation NHuH = f H + τH
h , thus τH

h is the “fine grid feedback” that
makes the coarse grid equation accurate.
τH

h is local and need only be recomputed where it becomes stale.



τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy



τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy



τ adaptivity for heterogeneous media

Applications
Geo: reservoir engineering, lithosphere dynamics (subduction,
rupture/fault dynamics)
carbon fiber, biological tissues, fracture
Conventional adaptivity fails

Traditional adaptive methods fail
Solutions are not “smooth”
Cannot build accurate coarse space without scale separation

τ adaptivity
Fine-grid work needed everywhere at first
Then τ becomes accurate in nearly-linear regions
Only visit fine grids in “interesting” places: active nonlinearity, drastic
change of solution



Comparison to nonlinear domain decomposition

ASPIN (Additive Schwarz preconditioned inexact Newton)

Cai and Keyes (2003)
More local iterations in strongly nonlinear regions
Each nonlinear iteration only propagates information locally
Many real nonlinearities are activated by long-range forces

locking in granular media (gravel, granola)
binding in steel fittings, crack propagation

Two-stage algorithm has different load balancing
Nonlinear subdomain solves
Global linear solve

τ adaptivity
Minimum effort to communicate long-range information
Nonlinearity sees effects as accurate as with global fine-grid
feedback
Fine-grid work always proportional to “interesting” changes



Low communication MG

red arrows can be removed by
τ-FAS with overlap

blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

no simple way to check that
discretization error is obtained

if fine grid state is not stored, use
compatible relaxation to complete
prolongation P



Reducing memory bandwidth

Sweep through “coarse” grid with moving window
Zoom in on new slab, construct fine grid “window” in-cache
Interpolate to new fine grid, apply pipelined smoother (s-step)
Compute residual, accumulate restriction of state and residual into
coarse grid, expire slab from window



Arithmetic intensity of sweeping visit
Assume 3D cell-centered, 7-point stencil

14 flops/cell for second order interpolation

≥ 15 flops/cell for fine-grid residual or point smoother

2 flops/cell to enforce coarse-grid compatibility

2 flops/cell for plane restriction

assume coarse grid points are reused in cache

Fused visit reads uH and writes ÎH
h uh and IH

h rh

Arithmetic Intensity

interp︷︸︸︷
15 +

compatible relaxation︷ ︸︸ ︷
2 · (15 + 2) +

smooth︷︸︸︷
2 ·15 +

residual︷︸︸︷
15 +

restrict︷︸︸︷
2

3 ·sizeof(scalar)/ 23︸︷︷︸
coarsening

& 30 (1)

Still & 10 with non-compressible fine-grid forcing



Regularity
Accuracy of recovery depends on operator regularity

Even with regularity, we can only converge up to discretization
error, unless we add a consistent fine-grid residual evaluation
Visit fine grid with some overlap, but patches do not agree exactly
in overlap
Need decay length for high-frequency error components (those that
restrict to zero) that is bounded with respect to grid size
Required overlap J is proportional to the number of cells to cover
decay length
Can enrich coarse space along boundary, but causes loss of
coarse-grid sparsity
Brandt and Diskin (1994) has two-grid LFA showing J . 2 is
sufficient for Laplacian
With L levels, overlap J(k) on level k ,

2J(k)≥ s(L− k + 1)

where s is the smoothness order of the solution or the
discretization order (whichever is smaller)



Basic resilience strategy

control

essential coarse

ephemeral

program n = 0

control

essential

coarse

storage

control

essential

restored n = 0

control

essential

ephemeral

recovered n = N

MPI/BLCR

n = 1,2, . . . ,N

restart
failed
ranks FMG

recovery

n = 1,2, . . . ,N

malloc
at n = 0

control contains program stack, solver configuration, etc.

essential program state that cannot be easily reconstructed:
time-dependent solution, current optimization/bifurcation
iterate

ephemeral easily recovered structures: assembled matrices,
preconditioners, residuals, Runge-Kutta stage solutions

Essential state at time/optimization step n is inherently globally
coupled to step n−1 (otherwise we could use an explicit method)

Coarse level checkpoints are orders of magnitude smaller, but allow
rapid recovery of essential state

FMG recovery needs only nearest neighbors



Multiscale compression and recovery using τ form

`fine

`cp + 1

`cp

. . . . . .

`cp

`cp + 1

`fine

CP

R
es

tr
ic

tSolve F(un;bn) = 0

next solve

bn+1(un,bn)bn

CP

CR CR

`fine

CR

`fineτ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

FMG Recovery

checkpoint converged coarse state
recover using FMG anchored at `cp + 1
needs only `cp neighbor points
τ correction is local

Normal multigrid cycles visit all levels moving from n→ n + 1

FMG recovery only accesses levels finer than `CP

Only failed processes and neighbors participate in recovery

Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain



First-order cost model for FAS resilience
Extend first-order locality-unaware model of Young (1974):

tW time to write a heavy fine-grid checkpointed state
tR time to read back lost state
R fraction of forward simulation needed for recomputation

from a saved state
P the heavy checkpoint interval
M mean time to failure

Neglect cost of I/O for lightweight coarse-grid checkpoints

Overhead = 1−AppUtilization =
tW
P︸︷︷︸

writing

+
tR
M︸︷︷︸

reading after failure

+
RP
2M︸︷︷︸

recomputation

Minimized for a heavy checkpointing interval P =
√

2MtW/R

Overhead∗ =
√

2tWR/M + tR/M

where the first term is always larger than the second. Conventional
checkpointing schemes store only fine-grid state, thus R = 1 (recovery
costs the same as initial computation).



Outlook

Implicit Runge-Kutta
Working: Tensor product matrices (TAIJ format) and one-level
methods
Next up: Algebraic multigrid for tensor product operators
Research: imaginary rotation in coarse operators (cf. MG for
Helmholtz)
Stochastic Galerkin has same structure
Is it possible to design methods with well-conditioned S = XΛX−1

τ-adaptivity
nonlinear smoothers (and discretizations)
dynamic load balancing
reliability of error estimates for refreshing τ


	Fast solvers for Implicit Runge-Kutta
	The memory bandwidth problem
	Implicit Runge-Kutta
	Tensor product algebra

	-adaptivity and multigrid compression
	Reducing communication and memory bandwidth
	Local recovery and postprocessing


