Exploits in Implicitness

hardware, problem structure, and library design

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)
Collaborators in this work:
Mark Adams (LBL), Peter Brune (ANL), Emil Constantinescu (ANL),
Debojyoti Ghosh (ANL), Matt Knepley (UChicago),
Dave May (ETH Zdirich, Lois Curfman Mclnnes (ANL),
Barry Smith (ANL))

SIAM PP, 2014-02-21

Why implicit?

m Nature has many spatial and temporal scales
m Porous media, structures, fluids, kinetics
Science/engineering problem statement does not weak scale
m More time steps required at high resolution

Robust discretizations and implicit solvers are needed to cope
Computer architecture is increasingly hierarchical
m algorithms should conform to this structure
Sparse matrices are comfortable, but outdated
m Algebraic multigrid, factorization
m Memory bandwidth-limited
“pblack box” solvers are not sustainable
m optimal solvers must accurately handle all scales
m optimality is crucial for large-scale problems
m hardware puts up a spirited fight to abstraction

The Great Solver Schism: Monolithic or Split?

m Physics-split Schwarz

m Direct solvers (based on relaxation)

m Coupled Schwarz m Physics-split Schur

m Coupled Neumann-Neumann (based on factorization)
(need unassembled matrices) m approximate commutators

SIMPLE, PCD, LSC

m Coupled multigrid m segregated smoothers

X Need to understand local m Augmented Lagrangian
spectral and compatibility m “parabolization” for stiff
properties of the coupled waves
system X Need to understand global

coupling strengths

m Preferred data structures depend on which method is used.
m Interplay with geometric multigrid.

Multi-physics coupling in PETSc

m package each “physics”
independently

m solve single-physics and
coupled problems

m semi-implicit and fully implicit
m reuse residual and Jacobian
evaluation unmodified

m direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

m use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

m matrix-free anywhere
m multiple levels of nesting

Multi-physics coupling in PETSc

MomentumSEkespressue

m package each “physics”
independently

m solve single-physics and
coupled problems

m semi-implicit and fully implicit
m reuse residual and Jacobian
evaluation unmodified

m direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

m use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

m matrix-free anywhere
m multiple levels of nesting

Multi-physics coupling in PETSc
m package each “physics”
independently

m solve single-physics and
coupled problems

m semi-implicit and fully implicit

‘ e‘ m reuse residual and Jacobian
evaluation unmodified

m direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation
m use the best possible matrix

format for each physics
(e.g. symmetric block size 3)

m matrix-free anywhere
m multiple levels of nesting

Multi-physics coupling in PETSc
m package each “physics”
independently

m solve single-physics and
coupled problems

m semi-implicit and fully implicit
l\/Ic; ;n}umesgessuD m reuse residual and Jacobian
— evaluation unmodified
Ice m direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation
m use the best possible matrix

format for each physics
(e.g. symmetric block size 3)

m matrix-free anywhere
m multiple levels of nesting

-]

Multi-physics coupling in PETSc

m package each “physics”
independently

- — m solve single-physics and

@omentume@u@ coupled problems

- m semi-implicit and fully implicit

@ m reuse residual and Jacobian
evaluation unmodified
m direct solvers, fieldsplit inside

multigrid, multigrid inside
] fieldsplit without recompilation

[Boundary Layer

m use the best possible matrix
[Blori] format for each physics
(e.g. symmetric block size 3)

m matrix-free anywhere
m multiple levels of nesting

Splitting for Multiphysics

A B||x| |f
C D||y| |g
m Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative]

AT A T A T A E[A T
D Cc D 1 11|C D
m Gauss-Seidel inspired, works when fields are loosely coupled
m Factorization: -pc_fieldsplit_type schur

—1 —1
A B 1 B .
2 e)] smomons

m robust (exact factorization), can often drop lower block
m how to precondition S which is usually dense?
B interpret as differential operators, use approximate commutators
m “Composable Linear Solvers for Multiphysics” ISPDC 2012
a

Monolithic Global Monolithic Local

—

rank 0 LocalToGlobalHappmg

Split Local

M, I Split Global
LocalToGloba’L(
GetLocalSubMat r1x(

rank 0
rank 1 rank 1 I I Irank 1

rank 2

rank 2 I

(GetSubHat rix() / GetSubVector()

rank 2

Work in Split Local space, matrix data structures reside in any space.

Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

4uy,+2v, u,+v u
-V y y X z Vs —
[ﬂ(U+ vy 2uy+4v, vz>] +TpgVs=0, (1)

m Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
m Geometric MG is good: A € [0.805,1] (SISC 2013)

(a) Ao = 0.0268 (b) s = 0.0409

Plugins in PETSc

Philosophy: Everything has a plugin architecture

m Vectors, Matrices, Coloring/ordering/partitioning algorithms
m Preconditioners, Krylov accelerators

m Nonlinear solvers, Time integrators

m Spatial discretizations/topology*

Example

Third party supplies matrix format and associated preconditioner,
distributes compiled shared library. Application user loads plugin at
runtime, no source code in sight.

Performance of assembled versus unassembled

10*

bytes/result

102

102 =

r T T 10°
- Qo _ Yy
I [}
L o’ 10° =
L B S
Lo g
2
D K]
3 Bl tensorb=1
r B W tensorb=3 T
B W tensorb=5
@@ assembled b=1[{ 10
@ @ assembled b=3 (]
T =g © © assembled b=5 |7
| % F- —- - = | | I I I 3
3 4 5 6 7 2 3 4 5 6 7

m Arithmetic intensity for Q, elements

polynomial order

polynomial order

< }1 (assembled), ~ 10 (unassembled), ~ 4 to 8 (hardware)

m store Jacobian information at Quass quadrature points, can use AD

Power-law Stokes Scaling

T LI L S L T T
102 1 @ Dohp Q; — Q; slope=0.992
‘| m Dohp Q3 — @ slope=0.966
fg v Dohp Q; — Qs slope=1.020
§ A Dohp Qs — Qs slope=1.012
3102 || <« Dohp Q; — Qs slope=1.017
o F
=
?
@
48]
k=
|
10° =
F
i‘/ 1 1

10° 108
Degrees of freedom (velocity + pressure)

Only assemble Qi matrices, ML+PETSc smoothers for elliptic pieces
(fairly easy geometry and coefficients, Brown 2010 (J.Sci.Comput.))

pTatin3d: Long-term lithosphere dynamics

Topography
6

5.0e+01

m Dave May (ETH Zdrich), Laetitia Le Pourhiet (UPMC Paris)
m Visco-elasto-plastic rheology

m Material-point method for material composition, 10'° jumps
m Large deformation, post-failure analysis

m Free surface: Q» — P§*° (non-affine)

A\\=

pTatin3d: Long-term lithosphere dynamics

m Assembled matrices: 9216F /38912B = 0.235F /B

m Problem size limited by memory

m Mediocre performance, limited by memory bandwidth
m Poor scalability within a node (memory contention)

m Lots of experimentation with different algorithms

m Multigrid: matrix-free on finest levels

m Matrix-free: 51435F /824B = 62.42F /B
m 81 x 27 element gradient matrix

m Element setup computes physical gradient matrix
m 1.5x speedup when using all cores

m Tensor-product matrix-free: 16686F /824B = 20.25F /B
m Tensor contractions with 3 x 3 1D matrices
Tiny working set, vectorize over 4 elements within L1 cache
30% of Haswell FMA peak, register load/store limited
7% speedup (5x speedup on Sandy Bridge AVX)

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4

Unassembled matrix-vector product ~8

High-order residual evaluation >5

Processor Bandwidth (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 26 205 7.9
Tesla M2090 120 665 55
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

This is a dead end
m Arithmetic intensity < 1/4
m Idea: multiple right hand sides

(2k flops)(bandwidth)
sizeof (Scalar) + sizeof (Int)’

k < avg. nz/row

m Problem: popular algorithms have nested data dependencies
m Time step
Nonlinear solve
Krylov solve
Preconditioner/sparse matrix

m Cannot parallelize/vectorize these nested loops

This is a dead end
m Arithmetic intensity < 1/4
m Idea: multiple right hand sides

(2k flops)(bandwidth)
sizeof (Scalar) + sizeof (Int)’

k < avg. nz/row

m Problem: popular algorithms have nested data dependencies

m Time step
Nonlinear solve
Krylov solve
Preconditioner/sparse matrix

m Cannot parallelize/vectorize these nested loops

m Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication

Reduce memory bandwidth (reuse matrix)

Implicit Runge-Kutta, creates tensor product structure

Full space/one-shot methods for PDE-constrained optimization

Beyond global linearization: FAS multigrid

p-Laplacian, p =4, ¢ = 0.5, MG-like preconditioners

Solv. | T N.It L. It Func Jac PC NPC
NK-MG | 9.904 105 384 421 630 489 -
NEK-MG-FAS | 1.012 4 13 65 24 17 4
FASPIN | 1.424 4 18 368 - 22 23
FAS | 0.872 15 0 226 - - -
NCG-LFAS | 1.376 8 0 400 - - 25
NCG-RFAS | 0.792 10 0 181 - - 10
QN-LFAS | 1.344 8 0 400 - - 25
QN-RFAS | 1.104 16 0 289 - - 16
NGMRESL-FAS | 0.684 7 0 128 - - 8
NGMRESR-FAS | 0.648 8 0 129 - - 8

m Geometric coarse grids and rediscretization

Lagged quasi-Newton for nonlinear elasticity

Method Lag LS LinearSolve Its. F(u) Jacobian P~
LBFGS 3 cp preonly 18 37 5 18
LBFGS 3 cp 10°° 21 43 6 173
LBFGS 6 cp preonly 24 49 4 24
LBFGS 6 cp 107° 30 61 5 266
JFNK 0 cp preonly 11 23 11 11
JFNK 0 cp 10°° 8 69 8 60
JFNK 1 cp preonly 15 31 8 15
JFNK 1 cp 10°° 7 2835 4 2827
JFNK 3 cp preonly 23 47 6 23
JFNK 3 cp 10°° 7 3143 2 3135

m B and Brune, MC2013

IMEX time integration in PETSc
m Additive Runge-Kutta IMEX methods

G(t, x,x) = F(t,x)
Jo = @Gy + Gy

User provides:

B FormRHSFunction(ts,t,x,F,void *ctx);

B FormIFunction(ts,t,x,x,G,void *ctx);

B FormIJacobian(ts,t,x,x, o, J,Jp,mstr,void *ctx);
Can have L-stable DIRK for stiff part G, SSP explicit part, etc.
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
FAS nonlinear solves supported
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister ()

m Single step interface so user can have own time loop
m Same interface for Extrapolation IMEX, LMS IMEX (in development)

T

E =1,v = 0.2 material, coarsen by 32.
m Solve initial problem everywhere and compute
o =AM U — I APUP
m Change boundary conditions and solve FAS coarse problem

NG = [NPT — [N EE
~—

e f
f T

m Prolong, post-smooth, compute error e” = (1" — (N")~1#"

T

E =1,v = 0.2 material, coarsen by 32.
m Solve initial problem everywhere and compute
o =AM U — I APUP
m Change boundary conditions and solve FAS coarse problem

NG = [NPT — [N EE
~—

e f
f T

m Prolong, post-smooth, compute error e” = (1" — (N")~1#"
m Coarse grid with T is nearly 10 x better accuracy

Low communication MG

m red arrows can be removed by
7-FAS with overlap

m blue arrows can also be removed,

but then algebraic convergence
stalls when discretization error is
reached

m no simple way to check that
discretization error is obtained

m if fine grid state is not stored, use
compatible relaxation to complete
prolongation P

<
G

Iz

Final Coarse V(0,1)

5

S
G

Multiscale compression and recovery using 7T form

m checkpoint converged coarse state
m recover using FMG anchored at (¢, + 1
b" m needs only (., neighbor points b1 (u",b")

m 7 correction is local next solve

FMG Recovery

Normal multigrid cycles visit all levels moving from n — n+1
FMG recovery only accesses levels finer than {¢cp

Only failed processes and neighbors participate in recovery
Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain

m Maximize science per Watt

m Huge scope remains at problem
formulation

m Raise level of abstraction at which a
problem is formally specified

m Algorithmic optimality is crucial

m Improve matrix-free abstractions,
robustness, diagnostics

m Better language/library support for
aggregating

