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Motivation

Hardware trends
Memory bandwidth a precious commodity (8+ flops/byte)
Vectorization necessary for floating point performance
Conflicting demands of cache reuse and vectorization
Can deliver bandwidth, but latency is hard

Assembled sparse linear algebra is doomed!
Limited by memory bandwidth (1 flop/6 bytes)
No vectorization without blocking

Spatial-domain vectorization is intrusive
Must be unassembled to avoid bandwidth bottleneck
Whether it is “hard” depends on discretization
Geometry, boundary conditions, and adaptivity



Sparse linear algebra is dead (long live sparse . . . )

Arithmetic intensity < 1/4

Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

Problem: popular algorithms have nested data dependencies
Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

Cannot parallelize/vectorize these nested loops
Can we create new algorithms to reorder/fuse loops?

Reduce latency-sensitivity for communication
Reduce memory bandwidth (reuse matrix while in cache)
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Attempt: s-step methods in 3D
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Limited choice of preconditioners (none optimal, surface/volume)
Amortizing message latency is most important for strong-scaling
s-step methods have high overhead for small subdomains



Attempt: distribute in time (multilevel SDC/Parareal)

PFASST algorithm (Emmett and Minion, 2013)
Zero-latency messages (cf. performance model of s-step)
Spectral Deferred Correction: iterative, converges to IRK (Gauss,
Radau, . . . )
Stiff problems use implicit basic integrator (synchronizing on spatial
communicator)



Problems with SDC and time-parallel
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c/o Matthew Emmett, parallel compared to sequential SDC
Iteration count not uniform in s; efficiency starts low
Low arithmetic intensity; tight error tolerance (cf. Crank-Nicolson)
Parabolic space-time (Greenwald and Brandt; Horton and
Vandewalle)



Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸
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ys


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General framework for one-step methods
Diagonally implicit: A lower triangular, stage order 1 (or 2 with
explicit first stage)
Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order 1
If A is a general full matrix, all stages are coupled, “implicit RK”



Implicit Runge-Kutta
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Excellent accuracy and stability properties
Gauss methods with s stages

order 2s, (s,s) Padé approximation to the exponential
A-stable, symplectic

Radau (IIA) methods with s stages
order 2s−1, A-stable, L-stable

Lobatto (IIIC) methods with s stages
order 2s−2, A-stable, L-stable, self-adjoint

Stage order s or s + 1



Method of Butcher (1976) and Bickart (1977)
Newton linearize Runge-Kutta system at u∗

Y = un + hAF(Y )
[
Is⊗ In + hA⊗ J(u∗)

]
δY = RHS

Solve linear system with tensor product operator

Ĝ = S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse
SDC (2000) is Gauss-Seidel with low-order corrector
Butcher/Bickart method: diagonalize S = XΛX−1

Λ⊗ In + Is⊗ J
s decoupled solves
Complex eigenvalues (overhead for real problem)

Problem: X is exponentially ill-conditioned wrt. s
We avoid diagonalization

Permute Ĝ to reuse J: G = In⊗S + J⊗ Is
Stages coupled via register transpose at spatial-point granularity
Same convergence properties as Butcher/Bickart



MatTAIJ: “sparse” tensor product matrices

G = In⊗S + J⊗T

J is parallel and sparse, S and T are small and dense

More general than multiple RHS (multivectors)

Compare J⊗ Is to multiple right hand sides in row-major

Runge-Kutta systems have T = Is (permuted from Butcher method)

Stream J through cache once, same efficiency as multiple RHS

Unintrusive compared to spatial-domain vectorization or s-step



Convergence with point-block Jacobi preconditioning

3D centered-difference diffusion problem

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 130 (8.1)
Gauss 2 4 8 122 (15.2)
Gauss 4 8 4 100 (25)
Gauss 8 16 2 78 (39)



We really want multigrid

Prolongation: P⊗ Is
Coarse operator: In⊗S + (RAP)⊗ Is
Larger time steps

GMRES(2)/point-block Jacobi smoothing

FGMRES outer

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 82 (5.1)
Gauss 2 4 8 64 (8)
Gauss 4 8 4 44 (11)
Gauss 8 16 2 42 (21)



Toward a better AMG for IRK/tensor-product systems

Start with R̂ = R⊗ Is, P̂ = P⊗ Is

Gcoarse = R̂(In⊗S + J⊗ Is)P̂

Imaginary component slows convergence

Idea: rotate eigenvalues on coarse levels
Erlangga and Nabben On a multilevel Krylov
method for the Helmholtz equation
preconditioned by shifted Laplacian



Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

Naive centered-difference discretization

Leapfrog requires 1024 iterations at CFL=1

This is A-stable (can handle dissipation)



Outlook on IRK

IRK unintrusively offers bandwidth reuse and vectorization

No need for complex arithmetic (cf. Butcher and Bickart)

Need polynomial smoothers for IRK spectra

Change number of stages on spatially-coarse grids (p-MG, or even
increase)?
Experiment with SOR-type smoothers

Prefer point-block Jacobi in smoothers for parallelism

Study efficiency for nonlinear problems

Is it possible to speed up advection?

Possible IRK correction for IMEX (non-smooth explicit function)

PETSc implementation (parallel example running, interface
in-progress)


