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From natural structure to efficient algorithms
I Fluids, structures, plasma, chemistry, mesoscale materials, . . .
I Conservation of mass, energy, . . .
I Approximately balanced dynamics: weather systems, resonance
I Design accurate numerical methods that preserve compatibility
I Design efficient, scalable algorithms for solving associated

algebraic problems



Structure is also needed for analysis of models

I Optimization
I Smoothness
I Convexity
I Computability of gradients

I Data assimilation and experimental design
I High-dimensional probability distributions
I Sparsity of observations

I Stability analysis (bifurcations)



PETSc’s Goal

Make the best possible structure-exploiting methods:
I reusable
I easy to use
I extensible
I composable



Scalability definitions

Strong scalability
I Fixed problem size

I execution time T inversely
proportional to number of
processors p

Weak scalability
I Fixed problem size per

processor

I execution time constant as
problem size increases



Full Multigrid(FMG)
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I start with coarse grid

I x is prolonged using Ih
H on first visit to each finer level

I truncation error within one cycle

I about five work units for many problems

I highly efficient solution method



τ corrections

I Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.

I Solve initial problem everywhere and compute
τH
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I Change boundary conditions and solve FAS coarse problem
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I Prolong, post-smooth, compute error eh = úh − (Nh)−1 f́ h

I Coarse grid with τ is nearly 10× better accuracy
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The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.



Why is exploiting structure hard?

I Black box interfaces tend to exploit only one or two types of
structure at a time

I Cutting-edge science often needs to exploit all available structure
I Generic data structures not well matched to evolving hardware

I More concurrency, less memory per thread
I Deeper memory hierarchy, heterogeneous execution

I Nonlinearity and coupling with other physical models can change
the available structure

I Assumptions break down between model problems and
production

I Assumptions fall through the cracks
I E.g., model nonlinearity breaks assumption of Gaussian

probability distribution
I Switching to more “robust” method makes problem intractable

I Applications seek to satisfy disparate user groups, make
assumptions invalid in other contexts


