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Plan: ruthlessly eliminate communication

Why?

Local recovery despite global coupling
Tolerance for high-frequency load imbalance

From irregular computation or hardware error correction

More scope for dynamic load balance

Requirements

Must retain optimal convergence with good constants

Flexible, robust, and debuggable



Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by defining
a hierarchy of scale. A multigrid method is constructed from:

1 a series of discretizations
coarser approximations of the original problem
constructed algebraically or geometrically

2 intergrid transfer operators
residual restriction IH

h (fine to coarse)
state restriction ÎH

h (fine to coarse)
partial state interpolation Ih

H (coarse to fine, ‘prolongation’)
state reconstruction Ih

H (coarse to fine)

3 Smoothers (S)
correct the high frequency error components
Richardson, Jacobi, Gauss-Seidel, etc.
Gauss-Seidel-Newton or optimization methods



τ formulation of Full Approximation Scheme (FAS)
classical formulation: “coarse grid accelerates fine grid↘↗
τ formulation: “fine grid feeds back into coarse grid”↗↘
To solve Nu = f , recursively apply

pre-smooth ũh← Sh
pre(uh

0 , f
h)

solve coarse problem for uH NHuH = IH
h f h︸︷︷︸
f H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

correction and post-smooth uh← Sh
post

(
ũh + Ih

H(uH − ÎH
h ũh), f h

)
IH
h residual restriction ÎH

h solution restriction
Ih
H solution interpolation f H = IH

h f h restricted forcing
{Sh

pre,S
h
post} smoothing operations on the fine grid

At convergence, uH∗ = ÎH
h uh∗ solves the τ-corrected coarse grid

equation NHuH = f H + τH
h , thus τH

h is the “fine grid feedback” that
makes the coarse grid equation accurate.
τH

h is local and need only be recomputed where it becomes stale.
Interpretation by Achi Brandt in 1977, many tricks followed



Model problem: p-Laplacian with slip boundary
conditions

2-dimensional model problem for power-law fluid cross-section

−∇·
(
|∇u|p−2

∇u
)
− f = 0, 1≤ p≤ ∞

Singular or degenerate when ∇u = 0

Regularized variant

−∇·(η∇u)− f = 0

η(γ) = (ε
2 + γ)

p−2
2 γ(u) =

1
2
|∇u|2

Friction boundary condition on one side of domain

∇u ·n + A(x) |u|q−1 u = 0



Model problem: p-Laplacian with slip boundary
conditions

p = 1.3 and q = 0.2, checkerboard coefficients {10−2,1}
Friction coefficient A = 0 in center, 1 at corners
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τ corrections

Plane strain elasticity, E = 1000,ν = 0.4 inclusions in
E = 1,ν = 0.2 material, coarsen by 32.
Solve initial problem everywhere and compute
τH

h = AH ÎH
h uh− IH

h Ahuh

Change boundary conditions and solve FAS coarse problem

NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
h ũh− IH

h Nhũh︸ ︷︷ ︸
τH

h

Prolong, post-smooth, compute error eh = úh− (Nh)−1 f́ h

Coarse grid with τ is nearly 10× better accuracy
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NH úH = IH
h f́ h︸︷︷︸
f́ H

+NH ÎH
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τ adaptivity: an idea for heterogeneous media

Applications with localized nonlinearities
Subduction, rifting, rupture/fault dynamics
Carbon fiber, biological tissues, fracture

Adaptive methods fail for heterogeneous media
Rocks are rough, solutions are not “smooth”
Cannot build accurate coarse space without scale separation

τ adaptivity
Fine-grid work needed everywhere at first
Then τ becomes accurate in nearly-linear regions
Only visit fine grids in “interesting” places: active nonlinearity, drastic
change of solution



Comparison to nonlinear domain decomposition

ASPIN (Additive Schwarz preconditioned inexact Newton)

Cai and Keyes (2003)
More local iterations in strongly nonlinear regions
Each nonlinear iteration only propagates information locally
Many real nonlinearities are activated by long-range forces

locking in granular media (gravel, granola)
binding in steel fittings, crack propagation

Two-stage algorithm has different load balancing
Nonlinear subdomain solves
Global linear solve

τ adaptivity
Minimum effort to communicate long-range information
Nonlinearity sees effects as accurate as with global fine-grid
feedback
Fine-grid work always proportional to “interesting” changes



Low communication MG

red arrows can be removed by
τ-FAS with overlap

blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

no simple way to check that
discretization error is obtained

if fine grid state is not stored, use
compatible relaxation to complete
prolongation P



Nonlinear and matrix-free smoothing
matrix-based smoothers require global linearization
nonlinearity often more efficiently resolved locally
nonlinear additive or multiplicative Schwarz
nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one point) ·N

(cost of global residual)
∼ 1

finite difference: C < 2
finite volume: C ∼ 2, depends on reconstruction
finite element: C ∼ number of vertices per cell

larger block smoothers help reduce C
additive correction like Jacobi reduces C,
but need to assemble corrector/scaling



Multiscale compression and recovery using τ form
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FMG Recovery

checkpoint converged coarse state
recover using FMG anchored at `cp + 1
needs only `cp neighbor points
τ correction is local

Normal multigrid cycles visit all levels moving from n→ n + 1

FMG recovery only accesses levels finer than `CP

Lightweight checkpointing for transient adjoint computation

Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain



Outlook on τ-FAS adaptivity and compression

Benefits of AMR without fine-scale smoothness

Coarse-centric restructuring is a major interface change
Nonlinear smoothers (and discretizations)

Smooth in neighborhood of “interesting” fine-scale features
Which discretizations can provide efficient matrix-free smoothers?
Does there exist an efficient smoother based on element Neumann
problems?

Dynamic load balancing
Reliability of error estimates for refreshing τ

We want a coarse indicator for whether τ needs to change

Worthwhile for resilience and to better use hardware


	-adaptivity and multigrid compression

