
Tutorial on Git

Distributed Version Control and Development Workflow

Jed Brown jedbrown@mcs.anl.gov

Argonne National Lab, 2014-08-06

This talk: http://59A2.org/files/20140806-GitTutorial.pdf

http://59A2.org/files/20140806-GitTutorial.pdf


Distributed Version Control

Directed Acyclic Graph (DAG) history
Labels and namespaces
Branch structure to organize workflow
Flexible, asynchronous reviewing and quality control
Powerful merging

Work with clones, each is equivalent and fully-functional
Social conventions for which is canonical
Each has its own branch namespace

Provenance and auditability via cryptographic hashes

Operations are local (and fast)



Is linear history good?

Testing and review? Bugs and fixes are spread out.

When is a feature complete?

Merges contain completed features.

Asynchronous testing and review.



Labeling the DAG

http://eagain.net/articles/

git-for-computer-scientists/

HEAD: cursor naming “current
branch” or tag/commit

If a branch (usually),
committing will advance that
branch
Implicit reference for many
commands (like git diff)

Branches: lightweight labels
that move with cursor (HEAD)
and push/pull

Tags: stationary, can be signed

Hashes: every object is
uniquely identifiable by a SHA1
hash

http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/


Basic DAG commands
Git is fundamentally a tool for incrementally updating and
analyzing the labeled DAG.

commit create a new node in DAG and advance HEAD
checkout name move HEAD to specified branch and update

working tree to match
branch name create new branch label
tag name create (stationary) tag on commit indicated by

HEAD
merge commitish merge specified branch/tag/commit into cur-

rent branch, creating new commit and advanc-
ing HEAD

log ancestors of HEAD
log --first-parent ancestors of HEAD following only first parent of

merges
log -- path only those that modify path



Hands-on: configuration

git config --global user.name ’Your Name’

git config --global user.email your@email.com

git config --global color.ui auto

Optional: https://raw.githubusercontent.com/git/git/
master/contrib/completion/git-prompt.sh

Optional: https://raw.github.com/git/git/master/
contrib/completion/git-completion.bash

git config --global merge.log true

https://raw.githubusercontent.com/git/git/master/contrib/completion/git-prompt.sh
https://raw.githubusercontent.com/git/git/master/contrib/completion/git-prompt.sh
https://raw.github.com/git/git/master/contrib/completion/git-completion.bash
https://raw.github.com/git/git/master/contrib/completion/git-completion.bash


Hands-on: clone a repository

git clone
https://bitbucket.org/jedbrown/git-tutorial

cd git-tutorial
Compare the history

git log --graph
git checkout linear && git log --graph
git checkout integration
git log origin/a/dev..



The staging area (or “index”)

http://ndpsoftware.com/git-cheatsheet.html

Sometimes we don’t want to commit everything

It’s nice to incrementally resolve conflicts, then not be shown again

git add, git rm, and others need to be logged somehow

Fast and useful primitive for building tools (in Git and externally)

http://ndpsoftware.com/git-cheatsheet.html


Remotes

Remotes are named and cached remote repositories
more commands can complete locally

Cache is updated by git fetch and similar

Private namespace for branches (prevents conflicts)

“origin” is created by default by git clone

git remote add gh
git@github.com:jedbrown/git-tutorial



Hands-on: make a commit to show you were here

git checkout attendees

echo MCS > Jed_Brown

git add Jed_Brown

git commit -m"I’m at the Git tutorial"
Submit changes

git format-patch origin/attendees
and email patch to jed-tutorial@jedbrown.org

Fork repository on Bitbucket:
https://bitbucket.org/jedbrown/git-tutorial

git remote add yourname
https://yourname@bitbucket.org/yourname/git-tutorial
git push yourname attendees
Make a pull request to my repository

Fork repository on GitHub:
https://github.com/jedbrown/git-tutorial

https://bitbucket.org/jedbrown/git-tutorial
https://github.com/jedbrown/git-tutorial


Hands-on: working with branches
In your browser:
https://pcottle.github.io/learnGitBranching/

Spend a few minutes with the branching and merging examples
Advanced commands

reset path set staging area to match path in HEAD
rebase commit replay commits in ${commit}.. on top of

${commit}, advancing current branch (old
commits will be gc’d if not referenced)

rebase --abort go back to state before starting rebase
rebase -i HEAD˜3 interactively amend last three commits
cherry-pick commit make commit on current branch, effecting the

same change as ${commit}

reflog everywhere that HEAD has been in last 90
days (good to recover after a mistake)

gitk graphical history visualization
git citool graphical incremental commit tool

https://pcottle.github.io/learnGitBranching/


Workflow ideals

’master’ is always stable and ready to release

features are complete and tested before appearing in ’master’

commits are minimal logically coherent, reviewable, and testable
units

related commits go together so as to be reviewable and
debuggable by specialist

new development is not disrupted by others’ features and bugs

rapid collaboration between developers possible

git log --first-parent maint..master reads like a
changelog

bugs can be fixed once and anyone that needs the fix can obtain it
without side-effects



Simplified gitworkflows(7)

merges to be discarded when ‘next’ is rewound at next release

reviewed, thought 
to be complete test periods overlap

“graduation”
merged with 
evidence of stability

typical feature branch

v1.0 v2.0

v2.1

time

first-parent history of branch

maint

master..

.feature did not 
graduate for v2.0

.

.

. merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)

. merge to branch ‘next’ (discarded after next major release)

. commit in feature branch (feature branches usually start from ‘master’)

next

. .

. .

fix issue found by 
external client

.

.

.

.

. . .

risky feature

.

‘master’ contains 
‘maint’

.
‘next’ contains 
‘master’

latest feature 
release

maintenance 
release

testing and “eager” users,
bugs here only affect 
integration, not development

merge history (not first-parent)

. commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

testing & users

bug fixes tested 
like features

bug fix
for release

review 
pull req

v3.0

upcoming feature release 
will be tagged on ‘master’

next
after each release, the old ‘next’ 
is discarded and recreated

‘master’ is a stable base for 
new features, always ready 
to release

‘maint’ contains latest 
feature release



Best practices
Every branch has a purpose
Distinguish integration branches from topic branches
Do all development in topic branches

git checkout -b my/feature-branch master
Namespace your branches if working on a shared repository
Merge integration branches “forward”

maint-1→ maint→ master→ next
git checkout -b my/bugfix-branch maint-1

Write clear commit messages for reviewers and people trying to
debug your code
Avoid excessive merging from upstream

Always write a clear commit message explaining what is being
merged and why

Always merge topic branches as non-fast-forward (merge
--no-ff)
Gracefully retry if you lose a race to shared integration branch

This maximizes utility of --first-parent history

https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-merging
https://bitbucket.org/petsc/petsc/wiki/developer-instructions-git#markdown-header-racy-integration


Outlook

git init is only 3 more characters than mkdir

Unlimited free private repositories at https://bitbucket.org

Set up ssh keys so you don’t have to type passwords
Always start work in a new topic branch

Easy to checkpoint and context switch away
Can rebase or merge to existing branch if it makes sense

You can clean up from almost anything, reflog can help

Do not rebase commits that have been published
Commit often, then organize with git rebase -i

See also rebase.autosquash and git commit –fixup

Learn to summarize and search history

Check out merge strategies git merge --help

Git can remember conflict resolutions rerere.enabled=true

https://bitbucket.org

	Development Workflow

