Efficient Implicitness

Latency-Throughput and Cache-Vectorization Tradeoffs

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)

Heterogeneous Multi-Core workshop, NCAR, 2014-09-17

This talk:
http://59A2.0rg/files/20140917-EfficientImplicitness.pdf

http://59A2.org/files/20140917-EfficientImplicitness.pdf

Intro

m | work on PETSc, a popular linear and nonlinear solvers library
m Some users need fastest time to solution at strong-scaling limit

m Others fill memory with a problem for PETSc
m Sparse matrices are a dead end for memory bandwidth reasons
m but heavily embraced by legacy code and enable algebraic multigrid

We need to restructure algorithms, but how?

What are the fundamental long-term bottlenecks?

Intro

I work on PETSc, a popular linear and nonlinear solvers library
Some users need fastest time to solution at strong-scaling limit

Others fill memory with a problem for PETSc
Sparse matrices are a dead end for memory bandwidth reasons
m but heavily embraced by legacy code and enable algebraic multigrid

We need to restructure algorithms, but how?

What are the fundamental long-term bottlenecks?
Worrisome trends

Fine-grained parallelism without commensurate increase in caches
Emphasizing vectorization over cache reuse
High instruction latency to be covered by hardware threads

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4

Unassembled matrix-vector product ~8

High-order residual evaluation >5

Processor Bandwidth (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
Haswell-EP (estimate) 60 660 11
KNL (estimate) 100 (DRAM) 3000 30

How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1i1D/#par

Nehalem 2 1 2 5 32KiB 1638 B
Sandy Bridge 4 2 2 5 32KiB 819B
Haswell 4 2 4 5 32KiB 410B
BG/P 2 1 2 6 32KiB 1365 B
BG/Q 4 4 2 6 32KiB 682 B
KNC 8 4 4 5 32KiB 205 B
Tesla K20 32 * 2 10 64 KiB 102 B

m Most “fast” algorithms do about O(n) flops on n data
m DGEMM and friends do O(n®/?) flops on n data
m Exploitable parallelism limited by cache and register load/store

Story time: 27pt stencils instruction-limited for BG/P

Mstencil/s

__ Instruction
—— —— —~— _—_— limit
/ — 2x3
— 2x2
10 — | — X3
— 1x2
— Ix1

0 50 100 150 200 250 300 350 400
Input length

m rolling 2-step kernel extended to 27-point stencil
m 2 X 3 unroll-and-jam used exactly 32 registers
m jam width limited by number of registers, barely covers ILP

m 200-entry jammed stream fits in L1
m reuse in two directions for most problem sizes

m Malas, Ahmadia, Brown, Gunnels, Keyes (IJHPCA 2012)

Fine-grained parallelism in SpMM
A scale B

i B B |
] | |
| |
H B H B
B [| store . .
B W H B

column]
value [-.... ..]

m Enumerate all scalar products contributing to row of product, C
m Implemented using scan and gather

m Radix sort contributions to each row (two calls to sort)

m Contract row: reduce_by_key

m c/o Steve Dalton (2013 Givens Fellow, now at NVidia)

CUSP Performance summary

Total Time
Matrix CUSPARSE Ref Opt
Cantilever 61.9 576 21.6 2.8/27
Spheres 131.3 90.3 19.3 6.8 / 4.7
Accelerator 108.9 397 154 7.1/ 3.6
Economics 67.8 506 260 2.6 /20
Epidemiology 723 570 174 4.2 /3.3
Protein 92.0 56.2 394 23 /14
Wind Tunnel 182.5 107.1 28.1 6.5 / 3.8
QCD 974 836 171 5.7/ 4.9
Webbase 3086.3 154.2 190.8 16.2 / 0.8

m New CUSP SpMM is faster than CUSPARSE for all test matrices.

m Sorting optimization faster except for very irregular graph.

Memory overhead from expansion

35 = o 16 El \in

3 Max

Figure: Scalar Poisson: Expansion factor nnz(C)/nnz(A), contraction
nnz(C)/nnz(C)

m 3D has much higher variability by row

m For elasticity, expansion factor is larger by 3x (for 3D)

m Implementation could batch to limit total memory usage
m more kernel launches

Finite element: assembled versus unassembled

r T T 10*

10*

10°

bytes/result
flops/result

TR

/ B8 tensorb=1
K BB tensorb=3 T

W @ tensorb=5
@@ assembled b=1
@ @ assembled b=3

102

102 - -
F = — - — O O assembled b=5
S . S S L
1 2 3 4 5 6 7 1 2 3 4 5 6 7
polynomial order polynomial order

m Arithmetic intensity for Q, elements
m < % (assembled), ~ 10 (unassembled), ~ 4 to 8 (hardware)
m store Jacobian information at Quass quadrature points
m 70% of peak for Q3 on Nehalem - vectorization within an element
m 30% of peak for Q> on Sandy Bridge and Haswell - vectorization
across elements

pTatin3d: Lithospheric Dynamics
m Heterogeneous, visco-plastic Stokes with particles for material
composition/chemistry, geometric MG with coarse AMG
m May, Brown, Le Pourhiet (SC14)
m Viscous operator application for Qu-P§'se

m “Tensor”: matrix-free implementation using tensor product structure
on the reference element

m “Tensor C” absorbs metric term into stored tensor-valued coefficient
m Performance on 8 nodes of Edison (3686 GF/s peak)

Operator flops Pessimal cache Perfectcache Time GF/s
bytes F/B bytes F/B (ms)
Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22,5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 24 4920 2.9 — —

Cache versus vectorization

Fundamental trade-off
Hardware gives us less cache per vector lane
Intra-element vectorization is complicated and Uber-custom

Coordinate transformation is 27 -9 - sizeof (double) = 1944
bytes/element.

Vectorize over 4 or 8 elements, perhaps hardware threads

L1 cache is not this big: repeated spills in tensor contraction

This is a very simple problem

HPGMG: a new benchmarking proposal

m https://hpgmg.org, hpgmg-forum@hpgmg.org mailing list

m SC14 BoF: Wednesday, Nov 19, 12:15pm to 1:15pm

m Mark Adams, Sam Williams (finite-volume), myself (finite-element),
John Shalf, Brian Van Straalen, Erich Strohmeier, Rich Vuduc

m Implementations
Finite Volume memory bandwidth intensive, simple data

dependencies

Finite Element compute- and cache-intensive, vectorizes

m Full multigrid, well-defined, scale-free problem

m Goal: necessary and sufficient

m Every feature stressed by benchmark should be necessary for an
important application

m Good performance on the benchmark should be sufficient for good
performance on most applications

https://hpgmg.org

Kiviat diagrams

~*-ALE3D

+9-UMT Seq benchmark
~=-UMT 2013

~=~Hydra IMC

“=-NEK

++-Held-Suarez

*“:Lammps

GFLOPS FPU%
“*-Snap

GTC
~=Stream Triadd
==Linpack tuned
-#HPCG
==HPGMG-FV
==HPGMG-FE

m c/o lan Karlin and Bert Still (LLNL)

HPGMG distinguishes networks
LE+12 .4LA'§gregate Performancel_

z 8= Mira/FMG
2 —4—Cdison/FMG
o LE+11 H-@-Hopper/FMG
c
] i Peregring/FMG
] S-K/FMG /
5
a 1.E+10 /
h-]
a
=2
p) /
§ 1E+09 / i
a
g /
i
s
w 1.E+08
H
® 1
a
1.E+07

[

10 100 1000 10000 100000
Multicore Processors (= sockets)

m About 1M dof/socket
m Peregrine and Edison have identical node architecture
m Peregrine has 5:1 tapered 1B

Dynamic Range
i ‘ FE»FAS‘Performance‘

114000
e e Edison nodes=128
v v Vesta nodes=512 L
°

1500 e . {12000

410000

°
2
H
g 8000
1 @
£ 10001 . . 2
g £
& ° o
] v 16000
T v
2
=
v
500 - o Ve 14000
H
°
] 12000
v
HR
LR ‘ ‘ ‘
104 10° 10° 107 10°

Number of equations/node

m BG/Q vectorization overloads cache, load/store: 88% FXU, 12%
FPU

m Users like predictable performance across a range of problem sizes

m Half of all PETSc users care about strong scaling more

m Transient problems do not weak scale even if each step does

Where we are now: QR factorization with MKL on MIC

QR Factorization Performance using Intel* Math Kernel Library
on Intel* Xeon Phi™ Coprocessor SE10 and Intel* Xeon® Processor €5-2680

500 Over 1.5x peak Intel® Xeon Phi™

p coprocessor performance advantage
0 over Intel® Xeon® processor

300

2018 4096 6144 8192 10240 12288 14336 16384 18432 20480 22528 24576 26524
Matrix Size
Intel® Xeon Phi™ SE10 ~&-Intel’ Xeon" Processor €5-2680

Performance (GFlops)
g 8

Figure compares two CPU sockets (230W TDP) to one MIC (300W
TDP plus host)

Performance/Watt only breaks even at largest problem sizes
10* x 10* matrix takes 667 GFlops: about 2 seconds
This is an O(n®/2) operation on n data

MIC cannot strong scale, no more energy efficient/cost effective

Outlook

Memory bandwidth is a major limitation
Can change algorithms to increase intensity
m Usually increases stress on cache

Optimizing for vectorization can incur large bandwidth overhead
| think data motion is a more fundamental long-term concern
Latency is at least as important as throughput for many applications

“hard to program” versus “architecture ill-suited for problem”?
Performance varies with configuration

m number of tracers, number of levels, desired steps/second
m do not need optimality in all cases, but should degrade gracefully

