How can we quantify
performance versatility ?

Jed Brown jedbrown@mcs.anl.gov (ANL and CU Boulder)

JointLab, Chicago, 2014-11-24

This talk: http://59A2.0rg/files/20141124-Versatility.pdf

http://59A2.org/files/20141124-Versatility.pdf

Why do we need an exascale computer?

m Science & engineering demands

m Model fidelity: resolution, multi-scale, coupling

m Inversion/data assimilation

m Optimization, control

m Quantify uncertainty, risk-aware decisions

m Sequence of forward simulations, each needing more time steps
m External requirements on time-to-solution

m Policy: 5 SYPD for climate model to inform IPCC

m Weather: 250x faster than real-time

m Supply chain dynamics, manufacturing

m Field studies, disaster response

m Transient simulation is not weak scaling

m “weak scaling” [...] will increasingly give way to “strong scaling’
[The International Exascale Software Project Roadmap, 2011]

Is the tail wagging the dog?

m Creative thinking about science/engineering problems

m Guide software and hardware choices

m Scientist: “your code doesn’t scale”

m Center: “your machine is inappropriate for my application”
m Find corners of “science” that can use the machines

m Incentivize solving problems hardware is good at

m funding, allocations
B “if your code doesn’t run on machine X, I'm not paying”

m “The easiest way to make software scalable is to make it
sequentially inefficient” — Gropp (1999)

B Suboptimal modeling/algorithms are subtle inefficiency
m Fragmenting high-end from low-end, no middle
m Opportunity in advancing low-end to medium scale

Versatility

Solve problems of maximum science/engineering interest
At practical accuracy

With desired turn-around time

On available hardware

Using modular, extensible software

Reliably, debuggable

Automate everything

Why a new benchmark?

Goodhart’s Law

When a measure becomes a target, it ceases to be a good measure.

m But surely we can do better than HPL

m Every feature stressed by benchmark should be necessary for an
important application

m Good performance on the benchmark should be sufficient for good
performance on most applications

HPGMG: a new benchmarking proposal

https://hpgng. org, hpgmg-forum@hpgmg.org mailing list

m Mark Adams, Sam Williams (finite-volume), Jed Brown

(finite-element), John Shalf, Brian Van Straalen, Erich Strohmeier,
Rich Vuduc

m Building momentum, BoF at SC14

m Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies

Finite Element compute- and cache-intensive, vectorizes,
overlapping writes

m Full multigrid, well-defined, scale-free problem

m Best-known algorithms, no “fat” left to trim

m Representative of structure-exploiting algorithms

https://hpgmg.org

SuperMUC (FDR 10. E5-2680)

DOF/s

1el0 HPGMG-FE Performance

e e supermuc hp=140608

v v supermuc np=32768 1388
25.8B \
< . T
L 5 ®
%
L ® ?Z
4.8B % 1
| 1.6B \
I L)
29B
L 6&“" Yy first solve
w v after changing
v
v M problem size 9
o B\ ‘ a Py °
10" 10° 10%

Solve time (s)

500

400

{100

Edison (Aries. E5-2695v2)

DOF/s

1el0 HPGMG-FE Performance
e o edison np=131072 |
|| v v edison np=65536 155B
= = edison np=32768 o
e [
[)
¢ 69B
[)
12.9B
488 ' ¥
v
1.6B Ty
w v
.
N \'-

C—

"o ", _..varia'p_ility

{300

10 10°
Solve time (s)

{400

TFlop/s

1200

{100

Edison. SuperMUC. Titan

DOF/s

1el0 HPGMG-FE Performance

e e edison np=131072
v v supermuc np=140608

[|= = titan np=262144 o 155B

Solve time (s)

309B
, s Y. '
® v
° L \ -
\ l®'>~
| 1.6B a N
[|
\ . . %
“
v VA
[|
° o Titan >200ms
-y -
n ‘
' v L u L A 4 L
10" 10° 10*

500

100

HPGMG distinguishes networks at 1M dofs/core
1LE+12 74LA‘g_gregate PerformanceL

=@~ Mira/FMG
——Edison/FMG
1.E+11 [-B-Hopper/FMG
=i Peregrine/FMG
O K/FMG

1.E+10

1.E+09

NS

1.E+08

Degrees of Freedom Solved Per Second (D OF/s)

\\\.@\

1.E+07

1 10 100 1000 10000 100000
Multicore Processors (= sockets)

m Peregrine and Edison have identical node architecture
m Peregrine has 5:1 tapered I1B, Edison has Aries dragonfly topology

MIC communication bottlenecks on Stampede
0.60 -—{HPGMG-FV Solve Time

—¥— Stampede(CPU,20)
== Stampede(MIC,2M)
0.50 = 8= stampede{MIC, 16/)
o
B
S
_g. 0.40 =
w /
£ B i
w il #
5 030 B
a g
& e
B 020 BF 2
: A—frJ
2
o
I
0.00

1 10 100 1,000 10,000 100,000
NUMA Nodes (2M DOF/NUMA Node)

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual =8
Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6

How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1D/#par

Nehalem 2 1 2 5 32KiB 1638 B
Sandy Bridge 4 2 2 5 32KiB 819B
Haswell 4 2 4 5 32KiB 410 B
BG/P 2 1 2 6 32KiB 1365 B
BG/Q 4 4 2 6 32KiB 682 B
KNC 8 4 4 5 32KiB 205B
Tesla K20 32 * 2 10 64 KiB 102 B

m Most “fast” algorithms do about O(n) flops on n data

m DGEMM and friends do O(n®/?) flops on n data

m Exploitable parallelism limited by cache and register load/store
m L2/L3 performance highly variable between architectures

Where we are now: QR factorization with MKL on MIC

QR Factorization Performance using Intel* Math Kernel Librai
on Intel* Xeon Phi™ Coprocessors 7120P and Intel® Xeon* Processor ES 2697 v2

/74:4:

—

§

g

Performance (GFlops)
- 8 8 8 8

\,

2048 409 6144 8192 10240 12288 14336 16384 18432 20480 22528 24576 26624 28672 30720 32768 34816 36864 38912 40960
Matrix Size
e~ Native Execution on ntel* Xeon Phi™ Coprocessor 71200 - Automatic Offioad with 1 It Xeon Phi™ Coprocessor 7120P
e~ Automatic Offioad with 2 Intel" Xeon Phi™ Coprocessors 7120P ~a-ntel* Xeon" Processor €5-2697 v2

m Figure compares two CPU sockets (230W TDP) to one MIC (300W
TDP plus host)

Performance/Watt only breaks even at largest problem sizes
Haswell-EP doubles performance within same power envelope

10* x 10* matrix takes 667 GFlops: about 2 seconds

This is an O(n*/2) operation on n data

MIC cannot strong scale, no more energy efficient/cost effective
“hard to program” versus “architecture ill-suited for problem”?

Outlook

m How can we measure versatility?

m Opportunity cost of avoiding problems that “don’t scale”
m What is the impact of performance variability?

m Allocation budgeting, coupling, load balancing

m We should strive to put ourselves out of business

