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Why do we need an exascale computer?

m Science & engineering demands

m Model fidelity: resolution, multi-scale, coupling

m Inversion/data assimilation

m Optimization, control

m Quantify uncertainty, risk-aware decisions

m Sequence of forward simulations, each needing more time steps
m External requirements on time-to-solution

m Policy: 5 SYPD for climate model to inform IPCC

m Weather: 250x faster than real-time

m Supply chain dynamics, manufacturing

m Field studies, disaster response

m Transient simulation is not weak scaling

m “weak scaling” [...] will increasingly give way to “strong scaling’
[The International Exascale Software Project Roadmap, 2011]



Is the tail wagging the dog?

m Creative thinking about science/engineering problems

m Guide software and hardware choices

m Scientist: “your code doesn’t scale”

m Center: “your machine is inappropriate for my application”
m Find corners of “science” that can use the machines

m Incentivize solving problems hardware is good at

m funding, allocations
B “if your code doesn’t run on machine X, I'm not paying”

m “The easiest way to make software scalable is to make it
sequentially inefficient” — Gropp (1999)

B Suboptimal modeling/algorithms are subtle inefficiency
m Fragmenting high-end from low-end, no middle
m Opportunity in advancing low-end to medium scale



Versatility

Solve problems of maximum science/engineering interest
At practical accuracy

With desired turn-around time

On available hardware

Using modular, extensible software

Reliably, debuggable

Automate everything



Why a new benchmark?

Goodhart’s Law

When a measure becomes a target, it ceases to be a good measure.

m But surely we can do better than HPL

m Every feature stressed by benchmark should be necessary for an
important application

m Good performance on the benchmark should be sufficient for good
performance on most applications



HPGMG: a new benchmarking proposal

https://hpgng. org, hpgmg-forum@hpgmg.org mailing list

m Mark Adams, Sam Williams (finite-volume), Jed Brown

(finite-element), John Shalf, Brian Van Straalen, Erich Strohmeier,
Rich Vuduc

m Building momentum, BoF at SC14

m Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies

Finite Element compute- and cache-intensive, vectorizes,
overlapping writes

m Full multigrid, well-defined, scale-free problem

m Best-known algorithms, no “fat” left to trim

m Representative of structure-exploiting algorithms


https://hpgmg.org

SuperMUC (FDR 10. E5-2680)
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Edison (Aries. E5-2695v2)
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Edison. SuperMUC. Titan
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HPGMG distinguishes networks at 1M dofs/core
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m Peregrine and Edison have identical node architecture
m Peregrine has 5:1 tapered I1B, Edison has Aries dragonfly topology



MIC communication bottlenecks on Stampede
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Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual =8
Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6




How much parallelism out of how much cache?

Processor v width threads F/inst latency L1D L1D/#par

Nehalem 2 1 2 5 32KiB 1638 B
Sandy Bridge 4 2 2 5 32KiB 819B
Haswell 4 2 4 5 32KiB 410 B
BG/P 2 1 2 6 32KiB 1365 B
BG/Q 4 4 2 6 32KiB 682 B
KNC 8 4 4 5 32KiB 205B
Tesla K20 32 * 2 10 64 KiB 102 B

m Most “fast” algorithms do about O(n) flops on n data

m DGEMM and friends do O(n®/?) flops on n data

m Exploitable parallelism limited by cache and register load/store
m L2/L3 performance highly variable between architectures



Where we are now: QR factorization with MKL on MIC

QR Factorization Performance using Intel* Math Kernel Librai
on Intel* Xeon Phi™ Coprocessors 7120P and Intel® Xeon* Processor ES 2697 v2
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m Figure compares two CPU sockets (230W TDP) to one MIC (300W
TDP plus host)

Performance/Watt only breaks even at largest problem sizes
Haswell-EP doubles performance within same power envelope

10* x 10* matrix takes 667 GFlops: about 2 seconds

This is an O(n*/2) operation on n data

MIC cannot strong scale, no more energy efficient/cost effective
“hard to program” versus “architecture ill-suited for problem”?



Outlook

m How can we measure versatility?

m Opportunity cost of avoiding problems that “don’t scale”
m What is the impact of performance variability?

m Allocation budgeting, coupling, load balancing

m We should strive to put ourselves out of business



