Adaptive spatial discretizations coarsen where acceptable accuracy can be achieved on coarse grids.

Heterogeneous media requires high resolution throughout the domain.

NONLINEAR SOLVERS

The prevailing nonlinear solution algorithms are based on global linearization, using either Newton or Picard iteration.

\[F(u) = 0 \]

\[\text{Solve: } J(u)v = -F(u), \quad u \leftarrow u + v \]

\[\gamma(u) = \frac{1}{2} \nabla u^2 \]

- Each iteration requires a global linear solve (e.g., Krylov-Multigrid).
- Each iteration moves important information over large distances.
- Superlinear convergence not realized for nonsmooth problems.
- The number of iterations depends on the strength of the nonlinearity.

MODEL PROBLEM: p-LAPLACIAN WITH FRICTION

- 2-dimensional model problem for power-law fluid cross-section, \(1 \leq p < \infty \)
- \(\nabla \cdot (\gamma \nabla u) - f = 0 \)
- Friction boundary condition, \(0 < q \leq 1 \)
- \(\nabla u \cdot n + A(x)|u|^{p-1}u = 0 \)

CONVERGENCE OF RESIDUALS

- Adaptive solutions show good convergence.
- Convergence is robust to strong, long-range effects.

REFERENCES