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Why do we need scalable solvers?

m Increasing resolution

m larger problem sizes
m more 3D effects visible
m more time steps —> smaller budget per time step

m Sequence of simulations — data assimilation, UQ
m All other costs typically linear in problem size



® “Strong scaling”

m execution time (7) decreases in
inverse proportion to the number
of processors (p)

m fixed size problem (N) overall

m often instead graphed as
reciprocal, “speedup”

® “Weak scaling” (memory
bound)

m execution time remains constant,
as problem size and processor
number are increased in
proportion

m fixed size problem per processor

m also known as “Gustafson scaling”
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Review: two definitions of scalability

® “Strong scaling”

m execution time (7) decreases in
inverse proportion to the number
of processors (p)

m fixed size problem (N) overall

m often instead graphed as
reciprocal, “speedup”

® “Weak scaling” (memory
bound)
= execution time remains constant,
as problem size and processor
number are increased in
proportion
m fixed size problem per processor

m also known as “Gustafson scaling”
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The easiest way to make software scalable is to make it
sequentially inefficient. — Gropp 1999
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Is multigrid needed?

m Long-range coupling is slow to converge using local methods
m [teration count proportional to diameter of support of Green’s
functions
m How local are the Green’s functions?
m Columns of the inverse matrix

o) = [ 6len)iy)

m Sticky, flat bad — Green’s functions local (and SIA is accurate)

m Slippery bed (ice shelf), steep topography at high resolution

m Pressure: surface is Dirichlet boundary condition, causes rapid
decay



Bathymetry and stickyness distribution

m Bathymetry:
m Aspect ratio € = [H]/[x] < 1
m Need surface and bed slopes to be small
m Stickyness distribution:
m Limiting cases of plug flow versus vertical shear
m Stress ratio: A = [Tyz|/[Tmembrane]
m Discontinuous: frozen to slippery transition at ice stream margins

m Standard approach in glaciology:
Taylor expand in € and sometimes A, drop higher order terms.
A > 1 Shallow Ice Approximation (SIA), no horizontal coupling
A < 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane
m Hydrostatic and various hybrids, 2D or 3D elliptic solves
m Bed slope is discontinuous and of order 1.
m Taylor expansions no longer valid
m Numerics require high resolution, subgrid parametrization, short time
steps
m Still get low quality results in the regions of most interest.

m Basal sliding parameters are discontinuous.



Hydrostatic equations for ice sheet flow

m Valid when wy < u,, independent of basal friction (Schoof&Hindmarsh
2010)
m Eliminate p and w from Stokes by incompressibility:
3D elliptic system for u = (u, v)
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m Q; FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c



Paeudocolor
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m Bathymetry is essentially discontinuous on any grid
m Shallow ice approximation produces oscillatory solutions
m Nonlinear and linear solvers have major problems or fail
m Grid sequenced Newton-Krylov multigrid works

as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y. The “cliff” has
58° angle in the red line (12 x 125 meter elements), 73° for the cyan line
(6 x 62 meter elements).
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Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
hzve slope —1 which is optimal.
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Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced problem,

nat just the finest level solve.
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One high-accuracy solve

costs 30 times as much
as a residual evaluation

about 15 to reach truncation error

(Brown, Smith, Ahmadia 2013, SIAM J. Scientific Computing)



One high-accuracy solve

costs 30 times as much
as a residual evaluation

about 15 to reach truncation error

1000 times faster than some popular methods
e.g. Lemieux, Price, Evans, Knoll, Salinger, Holland, Payne 2011
(J. Computational Physics)
— Actual speedup subject to Amdahl’'s Law

(Brown, Smith, Ahmadia 2013, SIAM J. Scientific Computing)
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Algebraic multigrid for Hydrostatic

m Easy to use: assemble a matrix and throw it over the wall

m Higher setup costs, lower arithmetic intensity

m AMG uses heuristics to diagnose anisotropy; varies by
discretization

m Need to represent rotational modes

m Smoothed aggregation takes a “near null space” (translation plus
rotation)



Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

4uy,+2v, u,+v u
-V y y X z Vs —
[ﬂ( U+ vy 2uy+4v, vz>] +TpgVs=0, (1)

m Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
m Geometric MG is good: A € [0.805,1] (SISC 2013)

(a) Ao = 0.0268 (b) s = 0.0409



HPGMG-FE https://hpgmg.org
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https://hpgmg.org

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density pu, pressure p, and total energy density E:

(pu)e+V-(puwu—nDuj+pl)—pg=0
pi+V-pu=0
Ei+V-((E+p)u—krVT —koV®) —nDuj: Duj—pu-g =0

m Solve for density p, ice velocity u;, temperature T, and melt fraction
 using constitutive relations.
m This and many other formulations lead to a Stokes problem



The Great Solver Schism: Monolithic or Split?

m Physics-split Schwarz

m Direct solvers (based on relaxation)

m Coupled Schwarz m Physics-split Schur

m Coupled Neumann-Neumann (based on factorization)
(need unassembled matrices) m approximate commutators

SIMPLE, PCD, LSC

m Coupled multigrid m segregated smoothers

X Need to understand local m Augmented Lagrangian
spectral and compatibility m “parabolization” for stiff
properties of the coupled waves
system X Need to understand global

coupling strengths

m Preferred data structures depend on which method is used.
m Interplay with geometric multigrid.



Stokes

Weak form of the Newton step

Find (u,p) such that

/ (Dv)" [n1+n'Dw® Dw]Du
Q

—pV-v—qV-u=—v-F(w)

Block factorization

A BTl [ 1 A BT| [A
B a _BA*1 1 S| |B
where the Schur complement is

S=—-BA'BT.
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Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual =8
Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6




Outlook

Choose suitable technology

Geometric multigrid is simple and has low setup cost

Algebraic multigrid has higher setup, more finicky to discover
anisotropy
Stokes problems

m block factorization is easiest (all run-time options in PETSc)
m coupled MG is worth considering

Newton linearization of sliding
Mind the external factors



