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Why do we need scalable solvers?

Increasing resolution
larger problem sizes
more 3D effects visible
more time steps =⇒ smaller budget per time step

Sequence of simulations – data assimilation, UQ

All other costs typically linear in problem size



The easiest way to make software scalable is to make it
sequentially inefficient. – Gropp 1999
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Is multigrid needed?

Long-range coupling is slow to converge using local methods
Iteration count proportional to diameter of support of Green’s
functions

How local are the Green’s functions?
Columns of the inverse matrix

u(x) =
∫

y∈Ω
G(x ,y)f (y)

Sticky, flat bad – Green’s functions local (and SIA is accurate)
Slippery bed (ice shelf), steep topography at high resolution
Pressure: surface is Dirichlet boundary condition, causes rapid
decay



Bathymetry and stickyness distribution
Bathymetry:

Aspect ratio ε = [H]/[x]� 1
Need surface and bed slopes to be small

Stickyness distribution:
Limiting cases of plug flow versus vertical shear
Stress ratio: λ = [τxz ]/[τmembrane]
Discontinuous: frozen to slippery transition at ice stream margins

Standard approach in glaciology:
Taylor expand in ε and sometimes λ , drop higher order terms.

λ � 1 Shallow Ice Approximation (SIA), no horizontal coupling
λ � 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane

Hydrostatic and various hybrids, 2D or 3D elliptic solves

Bed slope is discontinuous and of order 1.
Taylor expansions no longer valid
Numerics require high resolution, subgrid parametrization, short time
steps
Still get low quality results in the regions of most interest.

Basal sliding parameters are discontinuous.



Hydrostatic equations for ice sheet flow
Valid when wx � uz , independent of basal friction (Schoof&Hindmarsh
2010)
Eliminate p and w from Stokes by incompressibility:

3D elliptic system for u = (u,v)
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Q1 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c



Bathymetry is essentially discontinuous on any grid
Shallow ice approximation produces oscillatory solutions
Nonlinear and linear solvers have major problems or fail
Grid sequenced Newton-Krylov multigrid works
as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y . The “cliff” has
58◦ angle in the red line (12×125 meter elements), 73◦ for the cyan line
(6×62 meter elements).



Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
have slope −1 which is optimal.



Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced problem,
not just the finest level solve.



One high-accuracy solve
costs 30 times as much
as a residual evaluation

about 15 to reach truncation error

1000 times faster than some popular methods
e.g. Lemieux, Price, Evans, Knoll, Salinger, Holland, Payne 2011

(J. Computational Physics)
— Actual speedup subject to Amdahl’s Law

(Brown, Smith, Ahmadia 2013, SIAM J. Scientific Computing)
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Algebraic multigrid for Hydrostatic

Easy to use: assemble a matrix and throw it over the wall

Higher setup costs, lower arithmetic intensity

AMG uses heuristics to diagnose anisotropy; varies by
discretization
Need to represent rotational modes

Smoothed aggregation takes a “near null space” (translation plus
rotation)



Eigen-analysis plugin for solver design
Hydrostatic ice flow (nonlinear rheology and slip conditions)

−∇

[
η

(
4ux +2vy uy + vx uz

uy + vx 2ux +4vy vz

)]
+ρg∇s = 0, (1)

Many solvers converge easily with no-slip/frozen bed, more difficult
for slippery bed (ISMIP HOM test C)
Geometric MG is good: λ ∈ [0.805,1] (SISC 2013)

(a) λ0 = 0.0268 (b) λ1 = 0.0409



HPGMG-FE https://hpgmg.org
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Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E :

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E +p)u− kT ∇T − kω∇ω

)
−ηDui :Dui −ρu ·g = 0

Solve for density ρ , ice velocity ui , temperature T , and melt fraction
ω using constitutive relations.

This and many other formulations lead to a Stokes problem



The Great Solver Schism: Monolithic or Split?

Monolithic

Direct solvers

Coupled Schwarz

Coupled Neumann-Neumann
(need unassembled matrices)

Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

Physics-split Schwarz
(based on relaxation)

Physics-split Schur
(based on factorization)

approximate commutators
SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian
“parabolization” for stiff
waves

X Need to understand global
coupling strengths

Preferred data structures depend on which method is used.
Interplay with geometric multigrid.



Stokes
Weak form of the Newton step

Find (u,p) such that∫
Ω
(Dv)T [

η1+η
′Dw⊗Dw

]
Du

−p∇ · v−q∇ ·u =−v ·F(w) ∀(v ,q)
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p

)
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Block factorization[
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]
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]
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[
A
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][
1 A−1BT

1

]
where the Schur complement is

S =−BA−1BT .



Hardware Arithmetic Intensity
Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual & 8

Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6



Outlook

Choose suitable technology

Geometric multigrid is simple and has low setup cost

Algebraic multigrid has higher setup, more finicky to discover
anisotropy
Stokes problems

block factorization is easiest (all run-time options in PETSc)
coupled MG is worth considering

Newton linearization of sliding

Mind the external factors


