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What is performance?
Dimensions

m Model complexity

m Accuracy
m Time

m per problem instance

m for the first instance

® compute time versus human time
m Cost

m incremental cost
m subsidized?

Terms relevant to scientist/engineer

Compute meaningful quantities — needed to make a decision or
obtain a result of scientific value—not one iteration/time step

No flop/s, number of elements/time steps



Work-precision diagram: de rigueurin ODE community
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[Hairer and Wanner (1999)]

m Tests discretization, adaptivity, algebraic solvers, implementation

m No reference to number of time steps, flop/s, etc.
m Useful performance results inform decisions about tradeoffs.



Strong Scaling: cost-time tradeoff
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m Good: shows absolute time
m Bad: log-log plot makes it difficult to discern efficiency
m Stunt 3: http://blogs.fau.de/hager/archives/5835

= Bad: plot depends on problem size
a


http://blogs.fau.de/hager/archives/5835

Strong Scaling: cost-time tradeoff
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m Good: shows efficiency at scale
m Bad: no absolute time, depends on problem size



Strong Scaling: cost-time tradeoff
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m Good: absolute time, absolute efficiency (like DOF/s/cost)
m Good: independent of problem size for perfect weak scaling

m Bad: hard to see machine size (but less important)
a



Exascale Science & Engineering Demands

m Model fidelity: resolution, multi-scale, coupling

m Transient simulation is not weak scaling: At ~ Ax
Analysis using a sequence of forward simulations

m Inversion, data assimilation, optimization

m Quantify uncertainty, risk-aware decisions
Increasing relevance = external requirements on time

m Policy: 5 SYPD to inform IPCC
m Weather, manufacturing, field studies, disaster response

“weak scaling” [...] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]
ACME @ 25km scaling saturates at < 10% of Titan (CPU) or Mira
m Cannot decrease Ax: SYPD would be too slow to calibrate
m “results” would be meaningless for 50-100y predictions, a “stunt run”
ACME v1 goal of 5 SYPD is pure strong scaling.

m Likely faster on Edison (2013) than any DOE machine —2020
m Many non-climate applications in same position.



HPL and the Top500 list
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m High Performance LINPACK

m Solve n x ndense linear system: &(N%/?) flops on N = n? data

m Top500 list created in 1993 by Hans Meuer, Jack Dongarra, Erich
Strohmeier, Horst Simon



Role of HPL

The major centers have their own benchmark suites (e.g., CORAL)
Nobody (vendors or centers) will say they built an HPL machine
HPL ranking and peak flop/s are still used for press releases

Machines need to be justified to politicians holding the money

m Politicians are vulnerable to propaganda and claims of inefficient
spending

It is naive to believe HPL has no influence on procurement or on
scientists’ expectations



Floating Point Operations per Byte, Double Precision
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It's all about the memory

Intel Sandy Bridge NVidia K20X

Computing Unit Computing Unit

AMD APU Llano

Computing Unit

NVidia K20X
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[Ang et al, 2014]

Coherent Request Queue (IFQ)

Memory Controller

Controller

DRAM m DRAM DRAM

m Memory motion dominates floating point cost

m About half of die devoted to caches

m Network moving on-die, maybe throughput cores

m High-bandwidth on-package memory may have worse latency than
DRAM




Arithmetic intensity is not enough
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m QR and LU factorization have same complexity.
m Stable QR factorization involves more synchronization.
m Synchronization is much more expensive on Xeon Phi.

A



Algorithms keep pace with hardware (sometimes)
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[c/o David Keyes]
m Opportunities now: uncertainty quantification, design
m Incentive to find optimal algorithms for more applications



What does “representative” mean?

m Diverse applications
m Explicit PDE solvers (seismic wave propagation, turbulence)
m Implicit PDE solvers and multigrid methods (geodynamics, structural
mechanics, steady-state RANS)
m Irregular graph algorithms (network analysis, genomics, game trees)
Dense linear algebra and tensors (quantum chemistry)
m Fast methods for N-body problems (molecular dynamics,
cosmology)
m Cross-cutting: data assimilation, uncertainty quantification

m Diverse external requirements
m Real-time, policy, manufacturing
m Privacy
m In-situ processing of experimental data
m Mobile/energy limitations



Necessary and sufficient

Goodhart’s Law

When a measure becomes a target, it ceases to be a good measure.

m Features stressed by benchmark necessary for some apps
m Performance on benchmark sufficient for most apps



HPGMG: a new benchmarking proposal

m https://hpgmg. org, hpgmg-forum@hpgmg.org mailing list

m Mark Adams, Sam Williams (finite-volume), Jed (finite-element),
John Shalf, Brian Van Straalen, Erich Strohmeier, Rich Vuduc

m Gathering momentum, SC14 BoF

m Implementations

Finite Volume memory bandwidth intensive, simple data
dependencies, 2nd and 4th order
Finite Element compute- and cache-intensive, vectorizes,
overlapping writes
m Full multigrid, well-defined, scale-free problem

m Matrix-free operators, Chebyshev smoothers


https://hpgmg.org

Full Multigrid (FMG): Prototypical Fast Algorithm

start with coarse grid

truncation error within one cycle

about five work units for many problems

no “fat” left to trim — robust to gaming

distributed memory — restrict active process set using Z-order
m O(log? N) parallel complexity stresses network

scale-free specification

® no mathematical reward for decomposition granularity
m don’t have to adjudicate “subdomain”



Multigrid design decisions

m () finite elements
m Partition of work not partition of data — sharing/overlapping writes
m (Q» is a middle-ground between lowest order and high order
m Matrix-free pays off, tensor-product element evaluation

Linear elliptic equation with manufactured solution
Mapped coordinates

m More memory streams, increase working set, longer critical path
No reductions

m Coarse grid is strictly more difficult than reduction
m Not needed because FMG is a direct method

Chebyshev/Jacobi smoothers, V(3,1) cycle

m Multiplicative smoothers hard to verify in parallel
m Avoid intermediate scales (like Block Jacobi/Gauss-Seidel)

Full Approximation Scheme



SuperMUC (FDR 10. E5-2680)
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Edison (Aries. E5-2695v2)
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HPGMG-FE on Edison. SuperMUC. Titan

DOF/s

IS

1el0 HPGMG-FE Performance

e e edison np=131072
v v supermuc hp=140608
[|m = titan np=262144 o 155B

‘.
r v
Climate 12.9B ° 3‘098

SYPD °

L v
goal ° v .
(] L
S ‘\ .
\ heS
| 1.6B a N
u be)
\ . . ~
*
% <
% .
o. Titan >200ms
r® \ [ ]
[}
n ‘
- v L - L A 4 L
10" 10° 10*

Solve time (s)

1500

1400

TFlop/s

1200

4100



Kiviat diagrams
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HPGMG-FV distinguishes networks at 2M DOFs/node
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MIC communication bottlenecks on Stampede
0.60 -—{HPGMG-FV Solve Time

—¥— Stampede(CPU,20)
== Stampede(MIC,2M)
0.50 = 8= stampede{MIC, 16/)
o
B
S
_g. 0.40 =
w /
£ B i
w il #
5 030 B
a g
& e
B 020 BF 2
: A—frJ
2
o
I
0.00

1 10 100 1,000 10,000 100,000
NUMA Nodes (2M DOF/NUMA Node)



Outlook

m What is the cost of performance variability?
m Measure best performance, average, median, 10th percentile?
m Applications bundling due to perverse queue incentives
Should dynamic range enter into a ranking metric?
m Why is NERSC installing DRAM in Cori?
m Versatility is an essential part of Performance.
Finite element or finite volume?
m overlapping writes, cache reuse
FE: > 20% Intel, 6% Blue Gene/Q; vs 10% for FV
FV: 4th order (higher Al) improves flop/s on Intel, not on BG/Q
FV 4th order performs best with “red-black GS” — weak order
dependence
Linear or nonlinear?

Irregularity and adaptivity?

Tensor-valued coefficients?
Elasticity?
HPGMG does not seek to address 1/O.



