Building a Community Model for Robustness and

Extensibility

This talk:
https://jedbrown.org/files/20160303-MIMCommunity . pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Collaborators: Matt Knepley (Rice), Dave May (ETH)

Melt in the Mantle, Newton Institute, Cambridge, 2016-03-03

https://jedbrown.org/files/20160303-MIMCommunity.pdf

Requirements for community magma software

v

Usability
Extensibility
» Materials
» Boundary conditions
» Discretization
» Packaging and distribution

v

v

Community
Performance

» Solvers
» End-to-end workflow

v

v

Verification and Validation

v

Data Assimilation

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

Firetran!

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript
» recompile to use JavaScript

v

v

v

Character encoding compiled in

v

Mutually incompatible forks

Firetran!

v

Renders HTML 10% faster than Firefox or Chromium.
but only if there is no JavaScript
» recompile to use JavaScript

v

v

Character encoding compiled in

v

Mutually incompatible forks

v

No confusing run-time proxy dialogs, edit file and recompile

v

Proxy configuration compiled in

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

Firetran!

» Renders HTML 10% faster than Firefox or Chromium.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

» Plan to extend script to recompile Firetran with optimal features
for each page.

Firetran struggles with market share

» Status quo in many scientific software packages
» Why do we tolerate it?

» |s scientific software somehow different?

Usability: Packaging and distribution

» Code must be portable — any compiler, any platform
> Need automatic tests to confirm

» Developers underestimate challenge of installing software

» User experience damaged even when user’s fault (broken
environment)

» Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

» Binary interface stability critical to packagers

Stokes modeling

» Something we trust: Conservation

V.- [nDu—pl] = pg momentum
V-u=0 mass
DT
E—V-(K‘VT):Q energy
Db =0 composition
Dt P

> Du=}[Vu+(Vu)T]
» Non-Newtonian Stokes, high-contrast coefficients 1010

» Boussinesq approximation, high Rayleigh number, zero Reynolds

» Free surface, near hydrostatic balance

» Something we don’t: Constitutive models
» n(Du,p, T,d;) shear viscosity—viscoplastic, non-smooth
» von Mises, Drucker-Prager, ...

» p(p, T,®;) density

Spatial discretization

v

Requirements
» Stable for resolved and under-resolved features
» Accurate for resolved scales
Q, — PS¢ Finite Element
+ Local mass conservation, hydrostatic mode built- /@ o &
+ Stable (not “stabilized”) velocity space R
+ ALE for moving free surface o -2 ® ol
- not uniformly stable wrt. aspect ratio 9 P
Staggered Finite Difference (C-grid) ' °
+ Fewer dofs for minimum resolution, full-space mt
- no ALE, lower order of accuracy, stencil growth f
Material Point Method

» Lagrangian marker particles
» Nonlinearities evaluated at markers

v

v

v

What does magma add?

v

Transport equation

v

Nonlinear feedback
Dispute about equation structure

» 2-equation: simple to add to Stokes solver; ill-conditioned
» 3-equation: better conditioning; local conservation issue
» 4-equation: space compatibility, extra saddle point

Zero-porosity limit
» Dave says different equations in different domains

» Arbitrary cutoff, dynamic switching
» Perhaps it should be a variational inequality

v

v

» High porosity also matters

Extensibility

v

Easy to implement materials/rheology and boundary conditions

v

Should not depend on discretization
Packaging and distribution
» Must be possible to package independently
» Some authors wait for a paper to be published
» Some authors want personal control of branding
» Alternative is inline source modification/forking

v

v

Must be a library — enables coupling and flexible UQ

Flow Control for a PETSc Application

Main Routine

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Application Function Jacobian
Initialization Evaluation Evaluation

Postprocessing

User modifications versus plugins

» Fragmentation is expensive and should be avoided
» Maintaining local modifications causes divergence
» Better to contain changes to a plugin

» dlopen() and register implementations in the shared library
» Invert dependencies and avoid loops

» 1ibB depends on 1ibA
» want optional implementation of 1ibA that uses 1ibB
> libA-plugin depends on both 1ibA and 1ibB

» Static libraries are anti-productive (tell your computing center)

» Can sort-of do plugins with link line shenanigans
» Still no reliable and ubiquitous way to handle transitive
dependencies

Adjoints or not?

v

Linear, backward in time model

v

Efficiently evaluates
d(small output)

d(large input)

v

Necessary for efficient evaluation of high-dimensional space
Mathematical challenges

» non-smooth models — subdifferentials

» chaotic dynamics — sufficient averaging, non-differentiable forward

map

Technical challenges

» Algorithmic differentiation

» Hand differentiation

» Needing more derivatives

» Unsupported components inevitable

v

v

Upstreaming and community building

» Maintainers should provide good alternatives to forking

» Welcoming environment for contributions

» Empower users — all major design decisions discussed in public
» cf. Harvey Birdman Rule of copyleft-next

» Privacy, “scooping”, openness
» My opinion: social problem, deal with using social means

» Major tech companies have grossly underestimated cost of

forking
> In science, we cannot pay off technical debt incurred by forking
» Provide extension points to reduce cost of new development

Simplified gitworkflows(7)

) maintenance
‘maint’ contains latest release

feature release
latest feature

upcoming feature release

will be tagged on ‘master

‘master’ contains
‘maint merged with v3.0
evidence of stability

aint’
O ‘master is a stable base for
bug fix new features, always ready
for release typical feature branch to release

“graduation”

feature did not ()

review
graduate for v2.0 | fix issue found by next
! risky feature pullreq external client |
1 ~ after each release, the old 'next
' 4 is discarded and recreated
\
\ testing & users
R S PR S
reviewed, thought bug fixes tested ‘next contains testing and “eager’ users,
to be complete like features test periods overlap ‘master’ bugs here only affect
integration, not development
time

———» first-parent history of branch

——————— merge history (not first-parent)

> merges to be discarded when ‘next’ is rewound at next release
merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)
merge to branch ‘next’ (discarded after next major release)
commit in feature branch (feature branches usually start from ‘master’)

[oNoNoN]

commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

Review of library best practices

» Namespace everything

» headers, libraries, symbols (all of them)
» use static and visibiliy to limit exports

> Avoid global variables
» Avoid environment assumptions; don’t claim shared resources
» stdout, MPI_COMM_WORLD

» Document interface stability guarantees, upgrade path
» Binary interface stability

» User debuggability

» Documentation and examples

» Portable, automated test suite

» Flexible error handling

» Support

Compile-time configuration

configuration in build system

» over-emphasis on “efficiency”

> templates are compile-time

v

» combinatorial number of variants
compromises on-line analysis capability
create artificial 10 bottlenecks
offloads complexity to scripts and “workflow” tools
limits automation and testing of calibration
maintaining consistency complicates provenance
PETSc Fail: mixing real/complex, 32/64-bit int

Choose dependencies wisely, but practically

» Licenses

» PETSc has a permissive license (BSD-2); anything more
restrictive must be optional
» ParMETIS license prohibits modification and redistribution
» But bugs don't get fixed, even with patches and reproducible tests
» Result: several packages now carry patched versions of
ParMETIS — license violation and namespace collision
Parallel ILU from Hypre
Users Manual says PILUT is deprecated — use EUCLID
EUCLID has memory errors, evidently not supported
Repository is closed; PETSc doesn’t have resources to maintain
Tough luck for users

v

>
>
»
>

v

Encapsulation is important to control complexity

v

Reconfiguring indirect dependencies breaks encapsulation
Single library may be used by multiple components in executable

» diamond dependency graph
» conflict unless same version/configuration can be used for both

v

Verification and Validation

Verification without validation is sport; validation without
verification is magic. — Anthony Scopatz

» Verification: solving the equations right

» Manufactured solutions

» Mesh refinement studies

» Benchmarks for non-smooth/emergent behavior
» Validation: solving the right equations

» Comparison with observations
» Do we have good initial/boundary conditions?

» Data assimilation

Outline

Performance

Solver Performance

>

vV VY VY

Bottleneck for most workflows; solver convergence plagues
practitioners

Direct — not viable in 3D

Non-scalable iterative — not viable at high resolution

Krylov is not magic — need quality preconditioner

Linear Multigrid

» Assembled vs unassembled

» Algorithmic fundamentals depend on discretization
Domain decomposition

» Reliant on assembled matrices

» New results with convergence guarantees; expensive setup
Nonlinear

» Newton-type methods — rely on global linearization

» Nonlinear Multigrid or DD

» Exciting adaptive methods, but need robustness first
Reexamine implementation after working out convergence
properties

Performance of assembled versus unassembled

r T T 1ot

104

10°

bytes/result

3
e

— a.*, =B

Bl tensorb=1
-l tensorb=3
B @ tensorb=5
@@ assembled b=1
@ @ assembled b=3

@ O assembled b=5

102

flops/result

1 2 3 4 5 6 7 1 2 3 4 5 6

~

polynomial order polynomial order

v

High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

Choose approximation order at run-time, independent for each
field

Precondition high order using assembled lowest order method
Implementation > 70% of FPU peak, SpMV bandwidth- wall-< 4%

v

vy

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)
Sparse matrix-vector product 1/6

Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual > 8
Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)
E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
KNL (DRAM) 100 3000 30

KNL (MCDRAM) 500 3000 6

Q» tensor product optimization
> Reference gradient 7; = [D® B2 B,Bo D® B,B® B D]
> Véx = (‘@é (%9 13)(6509 & I3)X (290/0)
» Invert 3 x 3 at quad. points: Vx& (7%)

tensor 29% tensor 29%
! 27 A(VxE)T V& 7
Au= & < w) U
e;,Ve| e ¢ (Vxg)' (0n)(Vx§) e
scatter accum gather

independent at quadrature points 6%

v

Pack 4 elements at a time in vector-friendly ordering
Intrinsics, 30% of peak AVX (SNB) and FMA (Haswell)
Similar structure in HPGMG-FE

vy

Operator Flops Pessimal Cache Perfect Cache Time GF/s
Bytes F/B Bytes F/B (ms)
Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 225 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 42 1072

Tensor C 14214 5832 24 4920 2.9 — —

Work-precision diagram: de rigueurin ODE community

107+ .
B ® no convergence in at least one step
r O bad convergence in at least one step
L O good convergence in all steps
o
£
l_
1072
error
10 10° 107 107! 107! 10°%3

103 10* 10° 10 107

[Hairer and Wanner (1999)]

» Tests discretization, adaptivity, algebraic solvers, implementation

» No reference to number of time steps, flop/s, etc.
» Useful performance results inform decisions about fradeoffs.

Strong Scaling: efficiency-time tradeoff

10%

102 4

NN
M moON® X

time

1072 . . .
10° 10! 10° 10° 10*

np

» Good: shows absolute time
» Bad: log-log plot makes it difficult to discern efficiency
» Stunt 3: http://blogs.fau.de/hager/archives/5835

» Bad: plot depends on problem size

http://blogs.fau.de/hager/archives/5835

Strong Scaling: efficiency-time tradeoff

0.14

0.12}

0.10f

efficiency

0.04

0.02}

0.00
10 10%

time

» Good: absolute time, absolute efficiency (like DOF/s/cost)
» Good: independent of problem size for perfect weak scaling
» Bad: hard to see machine size (but less important)

HPGMG-FE on Edison, SuperMUC, Titan

DOF/s

ul
T

~

lel0 HPGMG-FE Performance

[[e o edison np=131072

v v supermuc np=140608
= m titan np=262144 o 155B
['.
v
Climate 12.9B \ ° 3098
| SYPD ° v . L]
goal A4
) ° L \ .
\ l®’>
| 1.6B L])
| |
\ . = 6’),.
&
v A
o. Titan >200ms "
|® .\ -
n ‘
w) | |) - Y. .
107 10° 10

Solve time (s)

41500

1400

1100

End-to-end performance

» Education
» Preprocessing/custom implementation

» HPC Queue
» Execution time
» Solvers

> |/O

» Postprocessing/visualization

Exascale Science & Engineering Demands

» Model fidelity: resolution, multi-scale, coupling

» Transient simulation is not weak scaling: At ~ Ax
Analysis using a sequence of forward simulations

> Inversion, data assimilation, optimization

» Quantify uncertainty, risk-aware decisions
Increasing relevance =— external requirements on time

» Policy: 5 SYPD to inform IPCC

» Weather, manufacturing, field studies, disaster response
“weak scaling” [...] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]
ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

» Cannot decrease Ax: SYPD would be too slow to calibrate

» ‘“results” would be meaningless for 50-100y predictions, a “stunt

run”

ACME v1 goal of 5 SYPD is pure strong scaling.

> Likely faster on Edison (2013) than any DOE machine —2020
» Many non-climate applications in same position.

v

v

v

v

v

Tim Palmer’s call for 1km (Nature, 2014)

Running a climate simulator with 1-kilo-

metre cells over a timescale of a century will

require ‘exascale’ computers capable of han-

dling more than 10" calculations per second.

Such computers should become available

within the present decade, but may not

become affordable for individual institutes

for another decade or more.

» Would require 10* more total work than ACME target resolution
» 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite
resource and perfect weak scaling
» ACME currently at 3 SYPD with lots of work
» Two choices:
1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or
2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware
» DE Shaw’s Anton is an example of Option 2
» Models need to be constantly developed and calibrated
» custom hardware stifles algorithm/model innovation

» Exascale roadmaps don’t make a dent in 20x latency problem

Outlook

» Scientific software shouldn’t be “special”

» Usability is essential

» Defer all decisions to run time

» Plugins are wonderful for users and contributors

» Reviewing patches/educating contributors is a thankless task, but
crucial

» Application scaling mode must be scientifically relevant

» Versatility is needed for model coupling and advanced analysis
» Abstractions must be durable to changing scientific needs

» Plan for the known unknowns and the unknown unknowns

» The real world is messy!

	Performance

