
Building a Community Model for Robustness and
Extensibility

This talk:
https://jedbrown.org/files/20160303-MIMCommunity.pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Collaborators: Matt Knepley (Rice), Dave May (ETH)

Melt in the Mantle, Newton Institute, Cambridge, 2016-03-03

https://jedbrown.org/files/20160303-MIMCommunity.pdf


Requirements for community magma software

I Usability
I Extensibility

I Materials
I Boundary conditions
I Discretization
I Packaging and distribution

I Community
I Performance

I Solvers
I End-to-end workflow

I Verification and Validation

I Data Assimilation



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran!

I Renders HTML 10% faster than Firefox or Chromium.
I but only if there is no JavaScript

I recompile to use JavaScript

I Character encoding compiled in

I Mutually incompatible forks

I No confusing run-time proxy dialogs, edit file and recompile

I Proxy configuration compiled in

I For security, HTTP and HTTPS mutually incompatible

I Address in configuration file, run executable to render page

I Tcl script manages configuration file

I Plan to extend script to recompile Firetran with optimal features
for each page.



Firetran struggles with market share

I Status quo in many scientific software packages

I Why do we tolerate it?

I Is scientific software somehow different?



Usability: Packaging and distribution

I Code must be portable – any compiler, any platform
I Need automatic tests to confirm

I Developers underestimate challenge of installing software

I User experience damaged even when user’s fault (broken
environment)

I Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

I Binary interface stability critical to packagers



Stokes modeling
I Something we trust: Conservation

−∇ ·
[
ηDu−pI

]
= ρg momentum

∇ ·u = 0 mass
DT
Dt
−∇ · (κ∇T ) = Q energy

DΦi

Dt
= 0 composition

I Du = 1
2

[
∇u + (∇u)T

]
I Non-Newtonian Stokes, high-contrast coefficients 1010

I Boussinesq approximation, high Rayleigh number, zero Reynolds
I Free surface, near hydrostatic balance

I Something we don’t: Constitutive models
I η(Du,p,T ,Φi ) shear viscosity—viscoplastic, non-smooth

I von Mises, Drucker-Prager, . . .
I ρ(p,T ,Φi ) density



Spatial discretization

I Requirements
I Stable for resolved and under-resolved features
I Accurate for resolved scales

I Q2−Pdisc
1 Finite Element

+ Local mass conservation, hydrostatic mode built-in
+ Stable (not “stabilized”) velocity space
+ ALE for moving free surface
- not uniformly stable wrt. aspect ratio

I Staggered Finite Difference (C-grid)
+ Fewer dofs for minimum resolution, full-space multigrid
- no ALE, lower order of accuracy, stencil growth for Newton

I Material Point Method
I Lagrangian marker particles
I Nonlinearities evaluated at markers



What does magma add?

I Transport equation

I Nonlinear feedback
I Dispute about equation structure

I 2-equation: simple to add to Stokes solver; ill-conditioned
I 3-equation: better conditioning; local conservation issue
I 4-equation: space compatibility, extra saddle point

I Zero-porosity limit
I Dave says different equations in different domains
I Arbitrary cutoff, dynamic switching
I Perhaps it should be a variational inequality

I High porosity also matters



Extensibility

I Easy to implement materials/rheology and boundary conditions

I Should not depend on discretization
I Packaging and distribution

I Must be possible to package independently
I Some authors wait for a paper to be published
I Some authors want personal control of branding
I Alternative is inline source modification/forking

I Must be a library – enables coupling and flexible UQ



Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



User modifications versus plugins

I Fragmentation is expensive and should be avoided

I Maintaining local modifications causes divergence

I Better to contain changes to a plugin

I dlopen() and register implementations in the shared library
I Invert dependencies and avoid loops

I libB depends on libA
I want optional implementation of libA that uses libB
I libA-plugin depends on both libA and libB

I Static libraries are anti-productive (tell your computing center)
I Can sort-of do plugins with link line shenanigans
I Still no reliable and ubiquitous way to handle transitive

dependencies



Adjoints or not?

I Linear, backward in time model

I Efficiently evaluates
∂ (small output)
∂ (large input)

I Necessary for efficient evaluation of high-dimensional space
I Mathematical challenges

I non-smooth models – subdifferentials
I chaotic dynamics – sufficient averaging, non-differentiable forward

map
I Technical challenges

I Algorithmic differentiation
I Hand differentiation
I Needing more derivatives
I Unsupported components inevitable



Upstreaming and community building

I Maintainers should provide good alternatives to forking

I Welcoming environment for contributions
I Empower users – all major design decisions discussed in public

I cf. Harvey Birdman Rule of copyleft-next
I Privacy, “scooping”, openness

I My opinion: social problem, deal with using social means

I Major tech companies have grossly underestimated cost of
forking

I In science, we cannot pay off technical debt incurred by forking

I Provide extension points to reduce cost of new development



Simplified gitworkflows(7)

merges to be discarded when ‘next’ is rewound at next release

reviewed, thought 
to be complete test periods overlap

“graduation”
merged with 
evidence of stability

typical feature branch

v1.0 v2.0

v2.1

time

first-parent history of branch

maint

master..

.feature did not 
graduate for v2.0

.

.

. merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)

. merge to branch ‘next’ (discarded after next major release)

. commit in feature branch (feature branches usually start from ‘master’)

next

. .

. .

fix issue found by 
external client

.

.

.

.

. . .

risky feature

.

‘master’ contains 
‘maint’

.
‘next’ contains 
‘master’

latest feature 
release

maintenance 
release

testing and “eager” users,
bugs here only affect 
integration, not development

merge history (not first-parent)

. commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)

testing & users

bug fixes tested 
like features

bug fix
for release

review 
pull req

v3.0

upcoming feature release 
will be tagged on ‘master’

next
after each release, the old ‘next’ 
is discarded and recreated

‘master’ is a stable base for 
new features, always ready 
to release

‘maint’ contains latest 
feature release



Review of library best practices

I Namespace everything
I headers, libraries, symbols (all of them)
I use static and visibiliy to limit exports

I Avoid global variables
I Avoid environment assumptions; don’t claim shared resources

I stdout, MPI_COMM_WORLD

I Document interface stability guarantees, upgrade path

I Binary interface stability

I User debuggability

I Documentation and examples

I Portable, automated test suite

I Flexible error handling

I Support



Compile-time configuration

I configuration in build system

I over-emphasis on “efficiency”
I templates are compile-time

I combinatorial number of variants

I compromises on-line analysis capability

I create artificial IO bottlenecks

I offloads complexity to scripts and “workflow” tools

I limits automation and testing of calibration

I maintaining consistency complicates provenance

I PETSc Fail: mixing real/complex, 32/64-bit int



Choose dependencies wisely, but practically

I Licenses
I PETSc has a permissive license (BSD-2); anything more

restrictive must be optional
I ParMETIS license prohibits modification and redistribution
I But bugs don’t get fixed, even with patches and reproducible tests
I Result: several packages now carry patched versions of

ParMETIS – license violation and namespace collision
I Parallel ILU from Hypre

I Users Manual says PILUT is deprecated – use EUCLID
I EUCLID has memory errors, evidently not supported
I Repository is closed; PETSc doesn’t have resources to maintain
I Tough luck for users

I Encapsulation is important to control complexity

I Reconfiguring indirect dependencies breaks encapsulation
I Single library may be used by multiple components in executable

I diamond dependency graph
I conflict unless same version/configuration can be used for both



Verification and Validation

Verification without validation is sport; validation without
verification is magic. — Anthony Scopatz

I Verification: solving the equations right
I Manufactured solutions
I Mesh refinement studies
I Benchmarks for non-smooth/emergent behavior

I Validation: solving the right equations
I Comparison with observations
I Do we have good initial/boundary conditions?
I Data assimilation



Outline

Performance



Solver Performance
I Bottleneck for most workflows; solver convergence plagues

practitioners
I Direct – not viable in 3D
I Non-scalable iterative – not viable at high resolution
I Krylov is not magic – need quality preconditioner
I Linear Multigrid

I Assembled vs unassembled
I Algorithmic fundamentals depend on discretization

I Domain decomposition
I Reliant on assembled matrices
I New results with convergence guarantees; expensive setup

I Nonlinear
I Newton-type methods – rely on global linearization
I Nonlinear Multigrid or DD
I Exciting adaptive methods, but need robustness first

I Reexamine implementation after working out convergence
properties



Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each
field

I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product, residual & 8

Processor STREAM Triad (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
E5-2699v3 18-core 60 660 11
Blue Gene/Q node 29.3 205 7
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6

KNL (DRAM) 100 3000 30
KNL (MCDRAM) 500 3000 6



Q2 tensor product optimization
I Reference gradient Dξ = [D̂⊗ B̂⊗ B̂, B̂⊗ D̂⊗ B̂, B̂⊗ B̂⊗ D̂]
I ∇ξ x = (Dξ ⊗ I3)(Ee⊗ I3)x (29%)
I Invert 3×3 at quad. points: ∇xξ (7%)

Au = ∑
e∈Nel

E T
e︸︷︷︸

scatter accum

tensor 29%︷︸︸︷
DT

ξ
Λ
(

(∇xξ )T (ωη)(∇xξ )
)

︸ ︷︷ ︸
independent at quadrature points 6%

tensor 29%︷︸︸︷
Dξ Ee︸︷︷︸

gather

u

I Pack 4 elements at a time in vector-friendly ordering
I Intrinsics, 30% of peak AVX (SNB) and FMA (Haswell)
I Similar structure in HPGMG-FE

Operator Flops Pessimal Cache Perfect Cache Time GF/s
Bytes F/B Bytes F/B (ms)

Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22.5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 2.4 4920 2.9 — —



Work-precision diagram: de rigueur in ODE community

[Hairer and Wanner (1999)]

I Tests discretization, adaptivity, algebraic solvers, implementation
I No reference to number of time steps, flop/s, etc.
I Useful performance results inform decisions about tradeoffs.



Strong Scaling: efficiency-time tradeoff

I Good: shows absolute time
I Bad: log-log plot makes it difficult to discern efficiency

I Stunt 3: http://blogs.fau.de/hager/archives/5835
I Bad: plot depends on problem size

http://blogs.fau.de/hager/archives/5835


Strong Scaling: efficiency-time tradeoff

I Good: absolute time, absolute efficiency (like DOF/s/cost)
I Good: independent of problem size for perfect weak scaling
I Bad: hard to see machine size (but less important)



HPGMG-FE on Edison, SuperMUC, Titan

Titan >200ms

v
a
r
ia

b
ilit

y

1.6B

155B

309B
12.9B



End-to-end performance

I Education

I Preprocessing/custom implementation

I HPC Queue
I Execution time

I Solvers

I I/O

I Postprocessing/visualization



Exascale Science & Engineering Demands
I Model fidelity: resolution, multi-scale, coupling

I Transient simulation is not weak scaling: ∆t ∼∆x
I Analysis using a sequence of forward simulations

I Inversion, data assimilation, optimization
I Quantify uncertainty, risk-aware decisions

I Increasing relevance =⇒ external requirements on time
I Policy: 5 SYPD to inform IPCC
I Weather, manufacturing, field studies, disaster response

I “weak scaling” [. . . ] will increasingly give way to “strong scaling”
[The International Exascale Software Project Roadmap, 2011]

I ACME @ 25 km scaling saturates at < 10% of Titan (CPU) or
Mira

I Cannot decrease ∆x : SYPD would be too slow to calibrate
I “results” would be meaningless for 50-100y predictions, a “stunt

run”
I ACME v1 goal of 5 SYPD is pure strong scaling.

I Likely faster on Edison (2013) than any DOE machine –2020
I Many non-climate applications in same position.



Tim Palmer’s call for 1km (Nature, 2014)

I Would require 104 more total work than ACME target resolution
I 5 SYPD at 1km is like 75 SYPD at 15km, assuming infinite

resource and perfect weak scaling
I ACME currently at 3 SYPD with lots of work
I Two choices:

1. compromise simulation speed—this would come at a high price,
impacting calibration, data assimilation, and analysis; or

2. ground-up redesign of algorithms and hardware to cut latency by a
factor of 20 from that of present hardware

I DE Shaw’s Anton is an example of Option 2
I Models need to be constantly developed and calibrated

I custom hardware stifles algorithm/model innovation
I Exascale roadmaps don’t make a dent in 20x latency problem



Outlook

I Scientific software shouldn’t be “special”

I Usability is essential

I Defer all decisions to run time

I Plugins are wonderful for users and contributors

I Reviewing patches/educating contributors is a thankless task, but
crucial

I Application scaling mode must be scientifically relevant

I Versatility is needed for model coupling and advanced analysis

I Abstractions must be durable to changing scientific needs

I Plan for the known unknowns and the unknown unknowns

I The real world is messy!


	Performance

