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DD6 (1992) in Como, ltaly

Multigrid Solvers on Decomposed Domains

ACHI BRANDT and BORIS DISKIN

ABSTRACT. For general nonlinear elliptic problems with many gridpoints per pro-
cessor, a domain-decomposed multigrid algorithm is described. It solves a problem
in essentially the same work as needed for solving just once, by the fastest solver, a
separate problem in each subdomain. During the entire solution process, only few
episodes of data transfer between processors are needed, and the total amount of
transferred data is small compared with the size of the decomposition interfaces. A

mode analysis and numerical tests are reported.



Plan: ruthlessly eliminate communication

» Eliminate, not “aggregate and amortize”
Why?

» Enables pruning unnecessary work

» More scope for dynamic load balance
» Tolerance for high-frequency load imbalance
» From irregular computation or hardware error correction

» Local recovery despite global coupling

Requirements

» Must retain optimal convergence with good constants
» Flexible, robust, and debuggable



Multigrid Preliminaries

Multigrid is an O(n) method for solving algebraic problems by
defining a hierarchy of scale. A multigrid method is constructed from:
1. a sequence of discretizations

» coarser approximations of problem, same or different equations
» constructed algebraically or geometrically
2. intergrid transfer operators
» residual restriction I,’j (fine to coarse)
» state restriction 7,’74 (fine to coarse)
» partial state interpolation Iﬁ, (coarse to fine, ‘prolongation’)
» state reconstruction I7, (coarse to fine)
3. Smoothers (S)
correct the high frequency error components
Richardson, Jacobi, Gauss-Seidel, etc.
Gauss-Seidel-Newton or optimization methods

>
>
>
» Compatible Monte Carlo, ...



T formulation of Full Approximation Scheme (FAS)

» classical formulation: “coarse grid accelerates fine grid \, "
» 7 formulation: “fine grid feeds back into coarse grid” "™\,
» To solve Nu = f, recursively apply

pre-smooth {1 Sgre(u{)’, M

solve coarse problem for u  Nut = [ - NHTH TN — [ NPT
NI .

H H
f T

correction and post-smooth " < S (&h + 10U =TT, fh>

It residual restriction 1 solution restriction
n solution interpolation 7 = I['f" restricted forcing
{Spre: Spost}  smoothing operations on the fine grid

» At convergence, u"™* =T u"™ solves the T-corrected coarse grid

equation N7uH = fH 4t thus 1/’ is the “fine grid feedback” that
makes the coarse grid equation accurate.
> 7,7 is local and need only be recomputed where it becomes stale.
> Interpretation by Achi Brandt in 1977, many tricks followed



Segmental refinement: dependencies
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Segmental refinement: parallel
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Low communication MG

> red arrows can be removed by
T-FAS with overlap

> blue arrows can also be removed,
but then algebraic convergence
stalls when discretization error is
reached

» no simple way to check that
discretization error is obtained

» if fine grid state is not stored, use
compatible relaxation to complete
prolongation P

> “Segmental refinement” by Achi
Brandt (1977)

> 2-process case by Brandt and

Diskin (1994)




Segmental refinement: no horizontal communication

Adams, Brown, Knepley, Samtaney (SISC 2016)
27-point second-order stencil, manufactured analytic solution
5 SR levels: 162 cells/process local coarse grid

Overlap = Base + (L — ¢)Increment
» Implementation requires even number of cells—round down.

FMG with V(2,2) cycles

vV vy VY

v

Solve times: Laplacian, u=(><4 -2 xz), L=(2,1,1) (8 solves)

I T T T
=+ 1 F-cycle w/ V(2,2), 128° cells/core, 8 solves — non-redundant CGS
T bl . = *=1F-cycle w/ V(2,2), 128° cells/core, 8 solves — SR, non-redundant CGS |
aole: H eSH ||oo / HeFMGHoo V(2,2) cycles, 128° cells, no|=10.’4, 8 solves, non-redundant CGS
=0~ 1 F—cycle w/ V(2,2), N=32/core, 512 solves - redundant CGS
@1 F-cycle w/ V(2,2), N=32/core, 512 solves — non-redundant CGS
1 F—cycle w/ V(2,2), N=32/core, 512 solves — SR, non-redundant CGS

Base 215
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# cores (Edison)



Reducing memory bandwidth

Fine grid "window" (in cache)

Coarse grid (streaming)

Thread Number

4HIII\HBHIIHH.I2
i ‘ C
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v

Sweep through “coarse” grid with moving window

v

Zoom in on new slab, construct fine grid “window” in-cache

v

Interpolate to new fine grid, apply pipelined smoother (s-step)

v

Compute residual, accumulate restriction of state and residual
into coarse grid, expire slab from window



Arithmetic intensity of sweeping visit

» Assume 3D cell-centered, 7-point stencil

> 14 flops/cell for second order interpolation

» > 15 flops/cell for fine-grid residual or point smoother
» 2 flops/cell to enforce coarse-grid compatibility

» 2 flops/cell for plane restriction

» assume coarse grid points are reused in cache

» Fused visit reads u" and writes 7/u™ and //r"

> Arithmetic Intensity

interp ~ compatible relaxation  smooth  residual  restrict
=~ — A AN AN
15 + 2-(15+2) +2-154 15 4+ 2
3-sizeof(scalar)/ _2°
<~

coarsening

230

~

» Still = 10 with non-compressible fine-grid forcing



Regularity

Accuracy depends on operator regularity

>

Even with regularity, we can only converge up to discretization
error, unless we add a consistent fine-grid residual evaluation
Visit fine grid with some overlap, but patches do not agree exactly
in overlap

Need decay length for high-frequency error components (those
that restrict to zero) that is bounded with respect to grid size
Required overlap J is proportional to the number of cells to cover
decay length

Can enrich coarse space along boundary, but causes loss of
coarse-grid sparsity

Brandt and Diskin (1994) has two-grid LFA showing J < 2 is
sufficient for Laplacian.

With L levels, overlap J(k) on level k,

2J(k) > s(L—k+1)

where s is the smoothness order of the solution or the
discretization order (whichever is smaller)



Connections to Fast Multipole Method / .77-matrices

M2L
multipole to local
M2M

multipole to multipole

L2L

local to local

L2P

> local to particle

S ~" target particles
source particles particle to particle

[Yokota, Barba (2011)]

» Can evaluate solution of nearby problems without solving
everywhere

» need T correction from everywhere
» Segmental Refinement buffer regions ~ separation criteria
» No need for Green’s functions



Other uses of segmental refinement

» Compression of solutions, local decompression, resilience
» Transient adjoints

» Adjoint model runs backward-in-time, needs state from solution of
forward model

» Status quo: hierarchical checkpointing

» Memory-constrained and requires computing forward model
multiple times

» If forward model is stiff, each step has global dependence

» Compression via 7-FAS accelerates recomputation, can be local

» Visualization and analysis

» Targeted visualization in small part of domain
> Interesting features emergent so can’t predict where to look



Tolerances and FMG

Error: Laplacian, u=(x* - R2 x?), 128° cells/core
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Continental rifting

Rifting Video



Nuclear fuel pellet-cladding mechanics
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[Williamson et al (2012)]
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Model problem: p-Laplacian with slip boundary conditions

» 2-dimensional model problem for power-law fluid cross-section
~V-(|[VuP2Vu) —f=0, 1<p<oo

Singular or degenerate when Vu =0
» Regularized variant

—V-(nVu)—f=0
p-2 1
nn)=(+nN7=  yu)=5Vuf
» Friction boundary condition on one side of domain

Vu-n+A(X)|ulTu=0



Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {10721}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-003.vts
Cycle: 3

Newton convergence

Residual

20 40 60 80 100 120 140 160
Newton iteration



Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {1072 1}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-065.vts
Cycle: 65

Newton convergence

Residual
B

s
0 20 40 60 80 100 120 140 160
Newton iteration



Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {1072 1}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-074.vts
Cycle: 74

Poeucn

Newton convergence

Residual
B
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Newton iteration



Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {1072 1}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-076.vts
Cycle: 76

Poeucn

Newton convergence

Residual
B

20 40 60 80 100 120 140 160
Newton iteration



Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {10721}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-085.vts
Cycle: 85

Newton convergence

Residual

s
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Newton iteration




Model problem: p-Laplacian with slip boundary conditions

» p=1.3and g = 0.2, checkerboard coefficients {10721}
» Friction coefficient A= 0 in center, 1 at corners

DB: ex15-115.vts
Cycle: 1156
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o650 Newton convergence

Residual

s
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Newton iteration




T corrections

» Plane strain elasticity, E = 1000, v = 0.4 inclusions in
E =1,v = 0.2 material, coarsen by 32.
» Solve initial problem everywhere and compute
o = AFTH U — 1H AP uh
» Change boundary conditions and solve FAS coarse problem

NHGH = 11#0 - NPT — 1N
~—

~~

P H

» Prolong, post-smooth, compute error e = " — (N")~1#h



T corrections

» Plane strain elasticity, E = 1000, v = 0.4 inclusions in
E =1,v = 0.2 material, coarsen by 32.
» Solve initial problem everywhere and compute
o = AFTH U — 1H AP uh
» Change boundary conditions and solve FAS coarse problem

NHGH = 11#0 - NPT — 1N
~—

i o
» Prolong, post-smooth, compute error e = " — (N")~1#h
» Coarse grid with T is nearly 10x better accuracy



T adaptivity: an idea for heterogeneous media

» Applications with localized nonlinearities
» Subduction, rifting, rupture/fault dynamics
» Carbon fiber, biological tissues, fracture
» Frictional contact
» Adaptive methods fail for heterogeneous media

» Rocks are rough, solutions are not “smooth”
» Cannot build accurate coarse space without scale separation

» T adaptivity
» Fine-grid work needed everywhere at first
» Then T becomes accurate in nearly-linear regions
» Only visit fine grids in “interesting” places: active nonlinearity,
drastic change of solution



Comparison to nonlinear domain decomposition

» ASPIN (Additive Schwarz preconditioned inexact Newton)

Cai and Keyes (2003)
More local iterations in strongly nonlinear regions
Each nonlinear iteration only propagates information locally
Many real nonlinearities are activated by long-range forces
> locking in granular media (gravel, granola)
» binding in steel fittings, crack propagation
Two-stage algorithm has different load balancing
> Nonlinear subdomain solves
> Global linear solve

>
>
>
>

v

> T adaptivity
» Minimum effort to communicate long-range information
» Nonlinearity sees effects as accurate as with global fine-grid
feedback
» Fine-grid work always proportional to “interesting” changes



Nonlinear and matrix-free smoothing

vV v vy

matrix-based smoothers require global linearization
nonlinearity often more efficiently resolved locally
nonlinear additive or multiplicative Schwarz
nonlinear/matrix-free is good if

B (cost to evaluate residual at one “point”) -N 1

(cost of global residual)

» finite difference: C < 2
» finite volume: C ~ 2, depends on reconstruction
» finite element: C ~ number of vertices per cell
larger block smoothers help reduce C
additive correction (Jacobi/Chebyshev/multi-stage)
» global evaluation, as good as C = 1
> but, need to assemble corrector/scaling
» need spectral estimates or wave speeds




Outlook

v

T adaptivity: benefits of AMR without fine-scale smoothness
Coarse-centric restructuring is a major interface change

» Algebraic coarsening?
Nonlinear smoothers (and discretizations)

» Smooth in neighborhood of “interesting” fine-scale features

» Which discretizations can provide efficient matrix-free smoothers?

» Does there exist an efficient smoother based on element
Neumann problems?

v

v

v

Weakening data dependencies enables dynamic load balancing
Reliability of error estimates for refreshing 7

» We want a coarse indicator for whether T needs to change
» Phase fields can provide such information

v



