Community building through software design

This talk:
https://jedbrown.org/files/20170221-SI2Community. pdf

Jed Brown jed@jedbrown.org (CU Boulder)
Collaborators: Barry Smith (ANL), Matt Knepley (Rice), Karl
Rupp (TU Wien), and the rest of the PETSc team
Thanks to: DOE, NSF, Intel

SI2 Meeting, 2017-02-21


https://jedbrown.org/files/20170221-SI2Community.pdf

Firetran!

» Renders HTML 10% faster than Firefox or Chrome.



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in
» Mutually incompatible forks



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
but only if there is no JavaScript
» recompile to use JavaScript

v

v

Character encoding compiled in

v

Mutually incompatible forks

v

No confusing run-time proxy dialogs, edit file and recompile

v

Proxy configuration compiled in



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

» Plan to extend script to recompile Firetran with optimal features
for each page



Firetran!

» Renders HTML 10% faster than Firefox or Chrome.
» but only if there is no JavaScript
» recompile to use JavaScript

» Character encoding compiled in

» Mutually incompatible forks

» No confusing run-time proxy dialogs, edit file and recompile
» Proxy configuration compiled in

» For security, HTTP and HTTPS mutually incompatible

» Address in configuration file, run executable to render page
» Tcl script manages configuration file

» Plan to extend script to recompile Firetran with optimal features
for each page

» Open source, but private development



Firetran struggles with market share

» Status quo in many scientific software packages
» Why do we tolerate it?

» |s scientific software somehow “different”?



Computational Science & Engineering Challenges

» Model fidelity: resolution, multi-scale, coupling
Mathematical, computational, and modeling challenges
Best software capability written with different assumptions
Engages broader scientific and engineering community
Transient simulation is not weak scaling: At ~ Ax

v VvV VvV Vv

» Analysis using a sequence of forward simulations
> Inversion, data assimilation, optimization, experimental design
» Quantify uncertainty, risk-aware decisions
» Many nested loops, challenge to expose parallelism or exploit
commonalities
» Increasing relevance — external requirements on time
» Policy: 5 SYPD to inform IPCC
» Weather, manufacturing, field studies, disaster response
» Mistakes become costly

> “weak scaling” [...] will increasingly give way to “strong scaling”

[The International Exascale Software Project Roadmap, 2011]



Usability: Packaging and distribution

» Code must be portable — any compiler, any platform

» Need automatic tests to confirm
» Including quirky HPC systems, or equivalent environments
(containers)

» Developers underestimate challenge of installing software

» User experience damaged even when user’s fault (broken
environment)

» Package managers (Debian APT, RedHat RPM, MacPorts,
Homebrew, etc.)

» Binary interface stability critical to packagers



Compile-time configuration

configuration in build system: ad-hoc public API

» over-emphasis on “efficiency”

> templates are compile-time

v

» combinatorial number of variants
compromises on-line analysis capability
create artificial 10 bottlenecks
offloads complexity to scripts and “workflow” tools
limits automation and testing of calibration
maintaining consistency complicates provenance
PETSc Fail: mixing real/complex, 32/64-bit int



Flow Control for a PETSc Application

Main Routine

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Application Function Jacobian
Initialization Evaluation Evaluation

Postprocessing




User modifications versus plugins

» Fragmentation is expensive and should be avoided
» Maintaining local modifications causes divergence
» Better to contain changes to a plugin

» dlopen() and register implementations in the shared library
» Invert dependencies and avoid loops
1ibB depends on 1ibA
Want optional implementation of 1ibA that uses 1ibB
1libA-pluginB depends on both 1ibA and 1ibB
1ibA loads its plugins at run-time
» Static libraries are anti-productive (tell your computing center)
» Can sort-of do plugins with link line shenanigans
» LDLIBS="-1B $(libA-config -1libs)" dynamically search
and include plugins (and their dependencies)

» Constructor in 1ibA-plugin* registers itself with 1ibA
> cc -0 app user-app.c -1B -1lA-pluginB -1B -1A

v vV VvV v

» Still no reliable and ubiquitous way to handle transitive
dependencies



User-developer false dichotomy

the distinction between “users” and “developers” is actively
harmful — Matthew Turk (2013)

» A plugin architecture tricks library users into becoming developers
» Write code for yourself, then contribute to community
» Obstacles
» dirty, non-portable code
» unnecessary assumptions or ad-hoc problem-specific data
» Portable types and utility functions, enable compiler warnings
» Interfaces can encourage users to avoid bad dependencies

» Input arguments are same as library, have to do something to
directly access application data
» Fully custom extensions must also be possible

» Design for debuggability, document debugging tips

» Narrow vulnerability surface: input and output validation around
extension points



Upstreaming and community building

» Maintainers should provide good alternatives to forking
» Welcoming environment for contributions

» Empower users — all major design decisions discussed in public
» cf. Chatham House/“Harvey Birdman” Rule of copyleft-next
> https:
//github.com/richardfontana/hbr/blob/master/HBR.md
» Privacy, “scooping”, openness
» My opinion: social problem, deal with using social means
» Major tech companies have grossly underestimated cost of
forking
» In science, we cannot pay off technical debt incurred by forking

» Provide extension points to reduce cost of new development


https://github.com/richardfontana/hbr/blob/master/HBR.md
https://github.com/richardfontana/hbr/blob/master/HBR.md

Simplified gitworkflows(7)

) maintenance
‘maint’ contains latest release

feature release
latest feature

upcoming feature release

will be tagged on ‘master

‘master’ contains
‘maint merged with v3.0
evidence of stability

aint’
O ‘master is a stable base for
bug fix new features, always ready
for release typical feature branch to release

“graduation”

feature did not ()

review
graduate for v2.0 | fix issue found by next
! risky feature pullreq external client |
1 ~ after each release, the old 'next
' 4 is discarded and recreated
\
\ testing & users
R S PR S
reviewed, thought  bug fixes tested ‘next contains testing and “eager’ users,
to be complete  like features test periods overlap ‘master’ bugs here only affect
integration, not development
time

———» first-parent history of branch

——————— merge history (not first-parent)

> merges to be discarded when ‘next’ is rewound at next release
merge in first-parent history of ‘master’ or ‘maint’ (approximate “changelog”)
merge to branch ‘next’ (discarded after next major release)
commit in feature branch (feature branches usually start from ‘master’)

[oNoNoN ]

commit in bug-fix branch (bug-fix branches usually start from ‘maint’ or earlier)



Review of library best practices

» Namespace everything

» headers, libraries, symbols (all of them)
» use static and visibiliy to limit exports

> Avoid global variables
» Avoid environment assumptions; don’t claim shared resources
» stdout, MPI_COMM_WORLD

» Document interface stability guarantees, upgrade path
» Binary interface stability

» User debuggability

» Documentation and examples

» Portable, automated test suite

» Flexible error handling

» Support



Application, Framework, or Library?

» “I'm an end-user application. The top of the stack.”
» Wishful thinking much? Engineers script mouse clicks around
commercial GUI applications all the time.
» “Framework X is opinionated — it saves you time”
» It makes unwarranted assumptions about the environment
» Not to be confused with Good Defaults
» “You don’t put AMR into your application, you put your application
into AMR.”

yt is best thought of not as an application, but as a library
for asking and answering questions about data. — Matthew
Turk (2013)

» To embrace advanced analysis is to concede that higher levels
exist and will need to operate your code. A programmatic APl is a
priority.



Choose dependencies wisely, but practically

» Licenses

» PETSc has a permissive license (BSD-2); anything more
restrictive must be optional
» ParMETIS license prohibits modification and redistribution
» But bugs don't get fixed, even with patches and reproducible tests
» Result: several packages now carry patched versions of
ParMETIS — license violation and namespace collision
Parallel ILU from Hypre
Users Manual says PILUT is deprecated — use EUCLID
EUCLID has memory errors, evidently not supported
Repository is closed; PETSc doesn’t have resources to maintain
Tough luck for users

v

>
>
»
>

v

Encapsulation is important to control complexity

v

Reconfiguring indirect dependencies breaks encapsulation
Single library may be used by multiple components in executable

» diamond dependency graph
» conflict unless same version/configuration can be used for both

v



Support: petsc-users mailing list

60 T T T —fll— Algorithms

50 b \ . . | —@— Beginner
| = Bug Report
40 \ AN —y—— Features
N

— ~N—~v ——— Performance

—@— Runtime Errors

30

Relative Share (%)

0
2006 2007 2008 2009 2010 2011 2012 2013 2014
Year

» 964 emails in 2006 — 3947 emails in 2014

» Also have petsc-dev and petsc-maint
» Hard to tell at first contact if user is worth helping

> Lots of work
» Success stories are very satisfying

» 12 contributors in 2006—2007, 46 contributors in 2015



Verification and Validation

Verification without validation is sport; validation without
verification is magic. — Anthony Scopatz

» Verification: solving the equations right

» Manufactured solutions
» Mesh refinement studies
» Benchmarks for non-smooth/emergent behavior

» Can include in automated tests
» Validation: solving the right equations

» Comparison with observations
» Do we have good initial/boundary conditions?

» Data assimilation



Performance

» “We have to do it this way because of performance!”
» static memory allocation only (complexity bubbles up, prevents
composition)
» no indirect function calls (virtual functions, callbacks; prevents
extensibility)
» template specialization everywhere (huge binaries)
» “Implicit solvers don’t scale”
> Runs explicit diffusion instead
» Bystanders choke on Gordon Bell Reflux
» Granularity is key: minimize scope, but don’t over-reduce
» E.g., BLIS microkernel

» Lack of inlining hurts by spoiling vectorization more than anything
» Packing is very often an acceptable cost



End-to-end performance

» Education
» Preprocessing/custom implementation

» HPC Queue
» Execution time
» Solvers

> |/O

» Postprocessing/visualization



Credit

» Citations are academic currency
» Encourage citing some living document

» new developers can become authors
» PETSc criteria: when you provide support and maintenance for
your contributions

Impossible to cite all transitive dependencies

But important to cite those that matter, regardless of branding
PetscCitationsRegister("@article..."). run with
-citations to see which modules were used.

Decouple distribution from branding

» Some people insist on controlling distribution, for licensing or
branding reasons.
» Rare in practice: most would rather contribute upstream



Outlook

» Social aspects

» Licenses, CLA versus Developer Certificate of Origin

» Scientific software shouldn’t be “special”

» Usability is essential

» Plugins are wonderful for users, contributors,developers
» Just-in-time compilation is a useful abstraction

» Reviewing patches/educating contributors is a thankless task, but
crucial

» Plan for support, making your life easier also helps users

» Versatility is needed for model coupling and advanced analysis
» Abstractions must be durable to changing scientific needs

» Plan for the known unknowns and the unknown unknowns

» The real world is messy!



References

[
[

Jed Brown, Matthew G Knepley, and Barry F Smith.
Run-time extensibility and librarization of simulation software.
Computing in Science & Engineering, 17(1):38—45, 2015.

Matthew J Turk.

Scaling a code in the human dimension.

In Proceedings of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery, page 69. ACM, 2013.

Wolfgang Bangerth and Timo Heister.
What makes computational open source software libraries successful?
Computational Science & Discovery, 6(1):015010, 2013.

William D. Gropp.

Exploiting existing software in libraries: Successes, failures, and reasons why.

In Proceedings of the SIAM Workshop on Object Oriented Methods for Inter-operable
Scientific and Engineering Computing, pages 21-29. SIAM, 1999.

Ulrich Drepper.
How to write shared libraries, 2002—-2011.
http://www.akkadia.org/drepper/dsohowto.pdf.


http://www.akkadia.org/drepper/dsohowto.pdf

