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Motivation

I Hardware trends
I Memory bandwidth a precious commodity (8+ flops/byte)
I Vectorization necessary for floating point performance
I Conflicting demands of cache reuse and vectorization
I Can deliver bandwidth, but latency is hard

I Assembled sparse linear algebra is doomed!
I Limited by memory bandwidth (1 flop/6 bytes)
I No vectorization without blocking, return of ELLPACK

I Spatial-domain vectorization is intrusive
I Must be unassembled to avoid bandwidth bottleneck
I Whether it is “hard” depends on discretization
I Geometry, boundary conditions, and adaptivity



Sparse linear algebra is dead (long live sparse . . . )

I Arithmetic intensity < 1/4

I Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

I Problem: popular algorithms have nested data dependencies
I Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

I Cannot parallelize/vectorize these nested loops
I Can we create new algorithms to reorder/fuse loops?

I Reduce latency-sensitivity for communication
I Reduce memory bandwidth (reuse matrix while in cache)
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Attempt: s-step methods in 3D
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I Limited choice of preconditioners (none optimal, surface/volume)

I Amortizing message latency is most important for strong-scaling

I s-step methods have high overhead for small subdomains



Attempt: distribute in time (multilevel SDC/Parareal)

I PFASST algorithm (Emmett and Minion, 2012)
I Zero-latency messages (cf. performance model of s-step)
I Spectral Deferred Correction: iterative, converges to IRK (Gauss,

Radau, . . . )
I Stiff problems use implicit basic integrator (synchronizing on

spatial communicator)



Problems with SDC and time-parallel
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c/o Matthew Emmett, parallel compared to sequential SDC

I Iteration count not uniform in s; efficiency starts low

I Low arithmetic intensity; tight error tolerance (cf. Crank-Nicolson)

I Parabolic space-time also works, but comparison flawed



Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass


︸ ︷︷ ︸

A

F

y1
...

ys


un+1 = un + hbT F(Y )

I General framework for one-step methods

I Diagonally implicit: A lower triangular, stage order 1 (or 2 with
explicit first stage)

I Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order 1

I If A is a general full matrix, all stages are coupled, “implicit RK”



Implicit Runge-Kutta
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I Excellent accuracy and stability properties
I Gauss methods with s stages

I order 2s, (s,s) Padé approximation to the exponential
I A-stable, symplectic

I Radau (IIA) methods with s stages
I order 2s−1, A-stable, L-stable

I Lobatto (IIIC) methods with s stages
I order 2s−2, A-stable, L-stable, self-adjoint

I Stage order s or s + 1



Method of Butcher (1976) and Bickart (1977)

I Newton linearize Runge-Kutta system at u∗

Y = un + hAF(Y )
[
Is⊗ In + hA⊗ J(u∗)

]
δY = RHS

I Solve linear system with tensor product operator

Ĝ = S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse

I SDC (2000) is Gauss-Seidel with low-order corrector
I Butcher/Bickart method: diagonalize S = VΛV−1

I Λ⊗ In + Is⊗ J
I s decoupled solves
I Complex eigenvalues (overhead for real problem)



Ill conditioning

A = VΛV−1



Skip the diagonalization

[
s11 + J s12 + J
s21 + J s22 + J

]
︸ ︷︷ ︸

S⊗In+Is⊗J

S + j11I j12I
j21I S + j22I j23I

j32I S + j33I


︸ ︷︷ ︸

In⊗S+J⊗Is

I Accessing memory for J dominates cost

I Irregular vector access in application of J limits vectorization

I Permute Kronecker product to reuse J and make fine-grained
structure regular

I Stages coupled via register transpose at spatial-point granularity

I Same convergence properties as Butcher/Bickart



MatKAIJ: “sparse” Kronecker product matrices

G = In⊗S + J⊗T

I J is parallel and sparse, S and T are small and dense

I More general than multiple RHS (multivectors)

I Compare J⊗ Is to multiple right hand sides in row-major

I Runge-Kutta systems have T = Is (permuted from Butcher
method)

I Stream J through cache once, same efficiency as multiple RHS

I Unintrusive compared to spatial-domain vectorization or s-step



Convergence with point-block Jacobi preconditioning

I 3D centered-difference diffusion problem

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 130 (8.1)
Gauss 2 4 8 122 (15.2)
Gauss 4 8 4 100 (25)
Gauss 8 16 2 78 (39)



We really want multigrid

I Prolongation: P⊗ Is
I Coarse operator: In⊗S + (RJP)⊗ Is
I Larger time steps

I GMRES(2)/point-block Jacobi smoothing

I FGMRES outer

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 82 (5.1)
Gauss 2 4 8 64 (8)
Gauss 4 8 4 44 (11)
Gauss 8 16 2 42 (21)



Toward a better AMG for IRK/tensor-product systems

I Start with R̂ = R⊗ Is, P̂ = P⊗ Is

Gcoarse = R̂(In⊗S + J⊗ Is)P̂

I Imaginary component slows convergence

I Can we use a Kronecker product
interpolation?

I Rotation on coarse grids (connections to
shifted Laplacian)



Why implicit is silly for waves

I Implicit methods require an implicit solve in each stage.

I Time step size proportional to CFL for accuracy reasons.
I Methods higher than first order are not unconditionally strong

stability preserving (SSP; Spijker 1983).
I Empirically, ceff ≤ 2, Ketcheson, Macdonald, Gottlieb (2008) and

others
I Downwind methods offer to bypass, but so far not practical

I Time step size chosen for stability
I Increase order if more accuracy needed
I Large errors from spatial discretization, modest accuracy

I My goal: need less memory motion per stage
I Better accuracy, symplecticity nice bonus only
I Cannot sell method without efficiency



Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

I Naive centered-difference discretization

I Leapfrog requires 1024 iterations at CFL=1

I This is A-stable (can handle dissipation)



Diagonalization revisited

(I⊗ I−hA⊗L)Y = (1⊗ I)un (1)

un+1 = un + h(bT ⊗L)Y (2)

I eigendecomposition A = VΛV−1

(V ⊗ I)(I⊗ I−hΛ⊗L)(V−1⊗ I)Y = (1⊗ I)un.

I Find diagonal W such that W−11 = V−11
I Commute diagonal matrices

(I⊗ I−hΛ⊗L)(WV−1⊗ I)Y︸ ︷︷ ︸
Z

= (1⊗ I)un.

I Using b̃T = bT VW−1, we have the completion formula

un+1 = un + h(b̃T ⊗L)Z .

I Λ, b̃ is new diagonal Butcher table
I Compute coefficients offline using extended precision to handle

ill-conditioning of V
I Equivalent for linear problems, usually fails nonlinear stability



Exploiting realness
I Eigenvalues come in conjugate pairs

A = VΛV−1

I For each conjugate pair, create unitary transformation

T =
1√
2

[
1 1
i −i

]
I Real 2×2 block diagonal D; real Ṽ (with appropriate phase)

A = (VT ∗)(T ΛT ∗)(TV−1) = Ṽ D̃̃V−1

I Yields new block-diagonal Butcher table D, b̃.
I Halve number of stages using identity

(α + J)−1u = (α + J)−1u

Solve one complex problem per conjugate pair, then take twice
the real part.



REXI: Rational approximation of exponential

u(t) = eLtu(0)

I Haut, Babb, Martinsson, Wingate; Schreiber and Loft

(α⊗ I + hI⊗L)Y = (1⊗ I)un

un+1 = (β
T ⊗ I)Y .

I α is complex-valued diagonal, β is complex

I Constructs rational approximations of Gaussian basis functions,
target (real part of) eit

I REXI is a Runge-Kutta method: can convert via "modified
Shu-Osher form"

I Developed for SSP (strong stability preserving) methods
I Ferracina, Spijker (2005), Higueras (2005)
I Yields diagonal Butcher table A =−α−1,b =−α−2β



Abscissa for RK and REXI methods
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Stability regions
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Motivations Rational Approximation of Exponential Integrator) SWE on the plane SWE on the sphere REXI on sphere Results REXI and implicit Runge-Kutta Summary & future work

Computational Performance (SWE on the plane)

Spectral solver with RK4 time stepping method
vs. REXI with spectral solver

Resolution = 1282

More than one order of
magnitude faster with
similar accuracy

Proof of concept that
REXI works with spectral
methods

Computed on Linux Cluster, LRZ / Technical University of Munich

M.Schreiber, P. Peixoto, TS.Haut, BA.Wingate - Beyond spatial scalability limitations with a

massively parallel method for linear oscillatory problems, in International Journal of High

Performance Computing Applications

18 / 63



Outlook on Kronecker product solvers

I⊗S + T ⊗ J

I (Block) diagonal S is usually sufficient
I Best opportunity for “time parallel” (for linear problems)

I Is it possible to beat explicit wave propagation with high efficiency?

I Same structure for stochastic Galerkin and other UQ methods
I IRK unintrusively offers bandwidth reuse and vectorization
I Need polynomial smoothers for IRK spectra
I Change number of stages on spatially-coarse grids (p-MG, or

even increase)?
I Experiment with SOR-type smoothers

I Prefer point-block Jacobi in smoothers for spatial parallelism

I Possible IRK correction for IMEX (non-smooth explicit function)
I PETSc implementation (works in parallel, hardening in progress)
I Thanks to DOE ASCR


