
Practical and Efficient Time Integration and
Kronecker Product Solvers

Jed Brown jed.brown@colorado.edu (CU Boulder and ANL)
Collaborators: Debojyoti Ghosh (LLNL), Matt Normile (CU), Martin

Schreiber (Exeter)

Preconditioning, 2017-08-01
This talk: https:

//jedbrown.org/files/20170801-FastKronecker.pdf

https://jedbrown.org/files/20170801-FastKronecker.pdf
https://jedbrown.org/files/20170801-FastKronecker.pdf

 1

 10

 2007 2008 2009 2010 2011 2012 2013 2014

F
L

O
P

 p
e

r
B

y
te

End of Year

Floating Point Operations per Byte, Double Precision

Radeon HD 3870

Radeon HD 4870

Radeon HD 5870

Radeon HD 6970

Radeon HD 6970

Radeon HD 7970 GHz Ed.

Radeon HD 8970

Tesla C1060

Tesla C1060

Xeon X5680

Xeon X5690

Tesla K20

Tesla K20X

CPUs, Intel

Xeon X5482

Xeon X5492

Xeon W5590

Tesla C2050

Tesla C2090
Xeon E5-2690

Xeon E5-2697 v2

Xeon E5-2699 v3

GPUs, NVIDIA

GPUs, AMD

MIC, Intel

Xeon Phi X7120X

[c/o Karl Rupp]

2017 HPGMG performance spectra

Motivation

I Hardware trends
I Memory bandwidth a precious commodity (8+ flops/byte)
I Vectorization necessary for floating point performance
I Conflicting demands of cache reuse and vectorization
I Can deliver bandwidth, but latency is hard

I Assembled sparse linear algebra is doomed!
I Limited by memory bandwidth (1 flop/6 bytes)
I No vectorization without blocking, return of ELLPACK

I Spatial-domain vectorization is intrusive
I Must be unassembled to avoid bandwidth bottleneck
I Whether it is “hard” depends on discretization
I Geometry, boundary conditions, and adaptivity

Sparse linear algebra is dead (long live sparse . . .)

I Arithmetic intensity < 1/4

I Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

I Problem: popular algorithms have nested data dependencies
I Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

I Cannot parallelize/vectorize these nested loops
I Can we create new algorithms to reorder/fuse loops?

I Reduce latency-sensitivity for communication
I Reduce memory bandwidth (reuse matrix while in cache)

Sparse linear algebra is dead (long live sparse . . .)

I Arithmetic intensity < 1/4

I Idea: multiple right hand sides

(2k flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
, k � avg. nz/row

I Problem: popular algorithms have nested data dependencies
I Time step

Nonlinear solve
Krylov solve

Preconditioner/sparse matrix

I Cannot parallelize/vectorize these nested loops
I Can we create new algorithms to reorder/fuse loops?

I Reduce latency-sensitivity for communication
I Reduce memory bandwidth (reuse matrix while in cache)

Attempt: s-step methods in 3D

102 103 104 105

dofs/process

102

103

104

105

106
work

p = 1

p = 1, s = 2

p = 2, s = 3

p = 2, s = 5

102 103 104 105

dofs/process

102

103

104

105

106
memory

p = 1

p = 2

p = 2, s = 3

p = 2, s = 5

102 103 104 105

dofs/process

102

103

104

105

106
communication

p = 1

p = 2

p = 2, s = 3

p = 2, s = 5

I Limited choice of preconditioners (none optimal, surface/volume)

I Amortizing message latency is most important for strong-scaling

I s-step methods have high overhead for small subdomains

Attempt: distribute in time (multilevel SDC/Parareal)

I PFASST algorithm (Emmett and Minion, 2012)
I Zero-latency messages (cf. performance model of s-step)
I Spectral Deferred Correction: iterative, converges to IRK (Gauss,

Radau, . . .)
I Stiff problems use implicit basic integrator (synchronizing on

spatial communicator)

Problems with SDC and time-parallel

256 512 1K 2K 4K 8K 16K 32K 64K 112K 224K 448K
number of cores

1
2
4
8

16
32
64

128
256448
896

1792
sp

ee
du

p
ideal
PFASST (theory)
PMG+SDC (fine)
PMG+SDC (coarse)
PMG+PFASST

256 512 1K 2K 4K 8K 16K 32K 64K 112K 224K 448K
number of cores

0.0
0.2
0.4
0.6
0.8
1.0

re
l.

ef
fic

ie
nc

y PMG
PMG+PFASST

c/o Matthew Emmett, parallel compared to sequential SDC

I Iteration count not uniform in s; efficiency starts low

I Low arithmetic intensity; tight error tolerance (cf. Crank-Nicolson)

I Parabolic space-time also works, but comparison flawed

Runge-Kutta methods

u̇ = F(u)y1
...

ys


︸ ︷︷ ︸

Y

= un + h

a11 · · · a1s
...

. . .
...

as1 · · · ass


︸ ︷︷ ︸

A

F

y1
...

ys


un+1 = un + hbT F(Y)

I General framework for one-step methods

I Diagonally implicit: A lower triangular, stage order 1 (or 2 with
explicit first stage)

I Singly diagonally implicit: all Aii equal, reuse solver setup, stage
order 1

I If A is a general full matrix, all stages are coupled, “implicit RK”

Implicit Runge-Kutta

1
2 −

√
15

10
5

36
2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 −

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

I Excellent accuracy and stability properties
I Gauss methods with s stages

I order 2s, (s,s) Padé approximation to the exponential
I A-stable, symplectic

I Radau (IIA) methods with s stages
I order 2s−1, A-stable, L-stable

I Lobatto (IIIC) methods with s stages
I order 2s−2, A-stable, L-stable, self-adjoint

I Stage order s or s + 1

Method of Butcher (1976) and Bickart (1977)

I Newton linearize Runge-Kutta system at u∗

Y = un + hAF(Y)
[
Is⊗ In + hA⊗ J(u∗)

]
δY = RHS

I Solve linear system with tensor product operator

Ĝ = S⊗ In + Is⊗ J

where S = (hA)−1 is s× s dense, J =−∂F(u)/∂u sparse

I SDC (2000) is Gauss-Seidel with low-order corrector
I Butcher/Bickart method: diagonalize S = VΛV−1

I Λ⊗ In + Is⊗ J
I s decoupled solves
I Complex eigenvalues (overhead for real problem)

Ill conditioning

A = VΛV−1

Skip the diagonalization

[
s11 + J s12 + J
s21 + J s22 + J

]
︸ ︷︷ ︸

S⊗In+Is⊗J

S + j11I j12I
j21I S + j22I j23I

j32I S + j33I


︸ ︷︷ ︸

In⊗S+J⊗Is

I Accessing memory for J dominates cost

I Irregular vector access in application of J limits vectorization

I Permute Kronecker product to reuse J and make fine-grained
structure regular

I Stages coupled via register transpose at spatial-point granularity

I Same convergence properties as Butcher/Bickart

MatKAIJ: “sparse” Kronecker product matrices

G = In⊗S + J⊗T

I J is parallel and sparse, S and T are small and dense

I More general than multiple RHS (multivectors)

I Compare J⊗ Is to multiple right hand sides in row-major

I Runge-Kutta systems have T = Is (permuted from Butcher
method)

I Stream J through cache once, same efficiency as multiple RHS

I Unintrusive compared to spatial-domain vectorization or s-step

Convergence with point-block Jacobi preconditioning

I 3D centered-difference diffusion problem

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 130 (8.1)
Gauss 2 4 8 122 (15.2)
Gauss 4 8 4 100 (25)
Gauss 8 16 2 78 (39)

We really want multigrid

I Prolongation: P⊗ Is
I Coarse operator: In⊗S + (RJP)⊗ Is
I Larger time steps

I GMRES(2)/point-block Jacobi smoothing

I FGMRES outer

Method order nsteps Krylov its. (Average)

Gauss 1 2 16 82 (5.1)
Gauss 2 4 8 64 (8)
Gauss 4 8 4 44 (11)
Gauss 8 16 2 42 (21)

Toward a better AMG for IRK/tensor-product systems

I Start with R̂ = R⊗ Is, P̂ = P⊗ Is

Gcoarse = R̂(In⊗S + J⊗ Is)P̂

I Imaginary component slows convergence

I Can we use a Kronecker product
interpolation?

I Rotation on coarse grids (connections to
shifted Laplacian)

Why implicit is silly for waves

I Implicit methods require an implicit solve in each stage.

I Time step size proportional to CFL for accuracy reasons.
I Methods higher than first order are not unconditionally strong

stability preserving (SSP; Spijker 1983).
I Empirically, ceff ≤ 2, Ketcheson, Macdonald, Gottlieb (2008) and

others
I Downwind methods offer to bypass, but so far not practical

I Time step size chosen for stability
I Increase order if more accuracy needed
I Large errors from spatial discretization, modest accuracy

I My goal: need less memory motion per stage
I Better accuracy, symplecticity nice bonus only
I Cannot sell method without efficiency

Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve
linear advection to t = 1 on a 1024-point grid using point-block Jacobi
preconditioning of implicit Runge-Kutta matrix. The relative algebraic solver
tolerance is 10−8.

Family Stages Order Iterations

Crank-Nicolson/Gauss 1 2 3627
Gauss 2 4 2560
Gauss 4 8 1735
Gauss 8 16 1442

I Naive centered-difference discretization

I Leapfrog requires 1024 iterations at CFL=1

I This is A-stable (can handle dissipation)

Diagonalization revisited

(I⊗ I−hA⊗L)Y = (1⊗ I)un (1)

un+1 = un + h(bT ⊗L)Y (2)

I eigendecomposition A = VΛV−1

(V ⊗ I)(I⊗ I−hΛ⊗L)(V−1⊗ I)Y = (1⊗ I)un.

I Find diagonal W such that W−11 = V−11
I Commute diagonal matrices

(I⊗ I−hΛ⊗L)(WV−1⊗ I)Y︸ ︷︷ ︸
Z

= (1⊗ I)un.

I Using b̃T = bT VW−1, we have the completion formula

un+1 = un + h(b̃T ⊗L)Z .

I Λ, b̃ is new diagonal Butcher table
I Compute coefficients offline using extended precision to handle

ill-conditioning of V
I Equivalent for linear problems, usually fails nonlinear stability

Exploiting realness
I Eigenvalues come in conjugate pairs

A = VΛV−1

I For each conjugate pair, create unitary transformation

T =
1√
2

[
1 1
i −i

]
I Real 2×2 block diagonal D; real Ṽ (with appropriate phase)

A = (VT ∗)(T ΛT ∗)(TV−1) = Ṽ D̃̃V−1

I Yields new block-diagonal Butcher table D, b̃.
I Halve number of stages using identity

(α + J)−1u = (α + J)−1u

Solve one complex problem per conjugate pair, then take twice
the real part.

REXI: Rational approximation of exponential

u(t) = eLtu(0)

I Haut, Babb, Martinsson, Wingate; Schreiber and Loft

(α⊗ I + hI⊗L)Y = (1⊗ I)un

un+1 = (β
T ⊗ I)Y .

I α is complex-valued diagonal, β is complex

I Constructs rational approximations of Gaussian basis functions,
target (real part of) eit

I REXI is a Runge-Kutta method: can convert via "modified
Shu-Osher form"

I Developed for SSP (strong stability preserving) methods
I Ferracina, Spijker (2005), Higueras (2005)
I Yields diagonal Butcher table A =−α−1,b =−α−2β

Abscissa for RK and REXI methods

0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.10

0.05

0.00

0.05

0.10
Gauss
Gauss diag
Gauss rbdiag
REXI

Stability regions

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

15

10

5

0

5

10

15

20 0.500

1.000

1.5
00

Stability region, Gauss, #poles=4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

15

10

5

0

5

10

15

20
Order star, Gauss, #poles=4

1.0

0.5

0.1

0.0

0.0

0.0

0.1

0.5

1.0

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

15

10

5

0

5

10

15

20

0.500

1.000 1.500

Stability region, REXI NG, max_error=1e-10, #poles=33

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

15

10

5

0

5

10

15

20
Order star, REXI NG, max_error=1e-10, #poles=33

1.0

0.5

0.1

0.0

0.0

0.0

0.1

0.5

1.0

Motivations Rational Approximation of Exponential Integrator) SWE on the plane SWE on the sphere REXI on sphere Results REXI and implicit Runge-Kutta Summary & future work

Computational Performance (SWE on the plane)

Spectral solver with RK4 time stepping method
vs. REXI with spectral solver

Resolution = 1282

More than one order of
magnitude faster with
similar accuracy

Proof of concept that
REXI works with spectral
methods

Computed on Linux Cluster, LRZ / Technical University of Munich

M.Schreiber, P. Peixoto, TS.Haut, BA.Wingate - Beyond spatial scalability limitations with a

massively parallel method for linear oscillatory problems, in International Journal of High

Performance Computing Applications

18 / 63

Outlook on Kronecker product solvers

I⊗S + T ⊗ J

I (Block) diagonal S is usually sufficient
I Best opportunity for “time parallel” (for linear problems)

I Is it possible to beat explicit wave propagation with high efficiency?

I Same structure for stochastic Galerkin and other UQ methods
I IRK unintrusively offers bandwidth reuse and vectorization
I Need polynomial smoothers for IRK spectra
I Change number of stages on spatially-coarse grids (p-MG, or

even increase)?
I Experiment with SOR-type smoothers

I Prefer point-block Jacobi in smoothers for spatial parallelism

I Possible IRK correction for IMEX (non-smooth explicit function)
I PETSc implementation (works in parallel, hardening in progress)
I Thanks to DOE ASCR

