Center for Efficient Exascale Discretization

Jed Brown (CU Boulder) and the CEED team

Multicore 7 workshop, 2017-09-28

Project Overview
Goals & Team

* CEED is focused on the development of next-generation discretization software and algorithms
to enable efficient simulations for a wide range of science applications on future HPC systems.

* Funding: $3.0M/year, 2 labs (LLNL, ANL), 5 universities

g CEED

Brown Shephard 30+ researchers
° E W @j‘ @ u ’:\\ EXASCALE
E\(\g [S

2 Exascale Computing Project

Project Overview

Co-design Motifs

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh v curved meshes,
v unstructured AMR V optimized low-order support

incompressible SEM /
SC

6™ order DNS turbulence (Nek)

compressible FEM /

10" order basis function non-conforming AMR, 2" order mesh 2" order compressible shock hydro (MFEM)

" \
\ EXASCALE
E (l) P COMPUTING

3 Exascale Computing Project \\ PROJECT

2
b
17}
Q
Q
Eel
m
=]
N
=
=
S
=
3

q
E H

High-Order Software Ecosystem

P Awamws f, julia ‘
W W

OCCAAPI

Batched BLAS

CPUS GPUs Coprocessors

High-order Meshes Unstructured AMR

A=P"G"B" DBGP]

PETSc

e LA
preconditioners
Scalable matrix-free solvers High-Order Operator Format General Interpolation High-Order Visualization

",
E C\\ EXASCALE
. . (} P COMPUTING
7 Exascale Computing Project More info at: http://ceed.exascaleproject.org/fe ___ PROJECT

Crosscutting Technologies

CEED Software Products

CEED:'s library model enables ECP apps to easily take CEED'’s proxies and general purpose libs
advantage of the new discretization technologies target ECP vendors, STs, broader communit
* state-of-the art CEED discretization libraries * Ceedlings - CEED kernels, bake-off probs & miniapps
v better exploit the hardware to deliver significant performance v main tools to engage vendors & external projects
gain over conventional methods * CEED broadly applicable libraries

v based on MFEM/Nek, low & high-level APIs M A G M A w

’ icl.cs.utkedu/magma libocca.org

LAPACK for GPUs, multi/many-core Lightweight performance portability

P U m‘i Holmes

Parallel Unstructured Mesh Infrastructure P ETSC

nek5000.mcs.anl.gov mfem.org

High-performance spectral elements Scalable high-order finite elements

Main deliverable: all CEED software freely available on GitHub at https://github.com/CEED
New releases: mfem-3.3, gslib, Laghos and NekCEM ceedling, ...

y LE
‘ EX)

LE DISCRETIZATIONS

Applicable to variety of physics

ECP

Compressible flow (ALE, 8t order)
H(grad) -, H(curl) v H(div) RN
“nodes” “edges” “faces” "zones"

High-order High-order High-orde
kinematics MHD

rad. diff.

High-order
de Rham complex

thermaodynamics

Linear, quadratic and cubic finite element
spaces on curved meshes

[m]

) Q v

Nekbone

» Conjugate gradient spectral element benchmark with sum factorization
» Without multigrid preconditioner — a significant and interesting factor for Nek5000

Nekbone, nx1 = 8 Nekbone, nx1 = 16
105 5 105 5
w
£ 1044 104 4
?
o
&
§ 103 5 103 5
@
E —e— CPU serial
- CPUMPI
107 4 107 4 —e— KNL MPI+OpenMP
=@ KNL MPI+OpenMP+libxsmm
—e— GPU OpenACC
=®: GPU OpenACC+cuBLAS
10! T T T T 10! T T T T
1073 1072 107! 10° 10! 1073 1072 107t 10° 10t

Time (s) Time (s)

n1 /2 and t-| /2

» Suppose a linear scaling algorithm

» Let r(n) be the performance rate (e.g., DOF/second or GF/s) for local problem size
n=N/P

> Let rmax = max,r(n) be the peak attainable performance
> Ny =min{n:r(n) > Srma}
> b2 =202/ max

CEED-MS6
CEED Bake-Off Problems

BP1: Solve {Bu=f}, where {B} is the mass matrix.

BP2: Solve the vector system {Bu=f} with {B} from BP1.

S

‘wopaal} Jo seaibaq

BP3: Solve {Au=f}, where {A} is the Poisson operator.

Processors

BP4: Solve the vector system {Au=f} with {A} from BP3.

* Range of polynomial orders: {p=1, 2,...,8}, at least. [z] EE

* Cover range of sizes: from 1 element/MPI rank up to the memory limit. ' E] [Z”Z]

B
i

* BP1 and BP2 are relevant for many hyperbolic substeps in transport
problems. BP3 and BP4 reflect pressure, momentum, and diffusion
updates in fluid/thermal transport.

wopaayy jo sealbaq

Processors

Vector forms 'BP2 and BP4' re\(eal benefits of increased data reuse BP terminology: T-
and of amortized communication overhead. and E-vectors of HO
__dofs

* Benchmark repo: https://github.com/CEED/benchmarks E\(C\\P EStE TG

19 Exascale Computing Project PROJECT

BP1 on KNL: Nek5000 and MFEM

Config: Nek5000 linux (1 node, 32 tasks/node), intel, bpl, PA
TR0 T T T

[DOFs x CG iterations] / [compute nodes x seconds]

o
oy e p=1,q=p+2
e—o p=2,q=p+2
e—e p=3,q=p+2
e—e p=4, q=p+2 -- 600 iter/s
e—o p=5,q=p+2 — 6000 iter/s
s
TS 10 10 10* 10° 10° 10

Points per compute node

Nek5000 Ny = 15k, t1/2 =150us

» BG/Q has similar performance

Config: MFEM linux (1 node, 32 tasks/node), intel, bpl_v1, PA
s ases: T T T

[DOFs x CG iterations] / [compute nodes x seconds]
=
o

p=8, q=p+2
600 iter/s
6000 iter/s

10 10
Points per compute node

MFEM n;), = 10k, t; » = 4004

BP2 on KNL: Nek5000 and MFEM

9 Config: Nek5000 linux (1 node, 32 tasks/node), intel, bp2, PA
e b T e s

[DOFs x CG iterations] / [compute nodes x seconds]
-
S

10 10° 10 10
Points per compute node

Nek5000 n; /, = 30k, t; ;» = 3004s

o Config: MFEM linux (1 node, 32 tasks/node), intel, bp2a_v1, PA
S mansia T T T

10°

[DOFs x CG iterations] / [compute nodes x seconds]
=
S

200 iter/s
2000 iter/s
1004 - - = = =
10 10° 10 10 10 10 10

Points per compute node

MFEM ny , = 15k, t; /, = 300us

BP1 on Power8: Nek5000 and MFEM

109 CPnfig: MFEM r‘ay (1 node, 3% tasks/node), gcc, bp1_v1, PA

109

Config: Nek5000 ray (1 node, 32 tasks/node), gcc, bp1, PA

2

07

[DOFs x CG iterations] / [compute nodes x seconds]
3
[DOFs x CG iterations] / [compute nodes x seconds]

Toep c o p=6,q=p+2 1
oo p2,gpr2 e p=7,q=p+2
e e o p=8,q=p+2
- - 600 iter/s 600 iter/s
o0 p=5,q=p+2 — 6000 iter/s o—o p=4,q=p+2 — 6000 iter/s
et 102 103 104 105 106 107 Rt 102 103 104 105 106
Points per compute node Points per compute node

> Nek5000 t; o = 75us, MFEM t; , = 2001Ls

Table: Performance results for various machines using metrics defined in Sec. ??. Each entry
corresponds to Nek/MFEM results. Results sorted by problem and t% performance.

Machine/Problem rpax (MDOFs) ! (KDOFs) t% (ms)

Ray/BP1-gcc 400/350 15/35 0.075/0.200
KNL32/BP1-intel 200/150 15/30 0.150/0.400
KNL32/BP1-gcc 100/100 20/8 0.400/0.160
Vulcan/BP1-gcc 35/40 15/10 0.857/0.500
KNL32/BP2-intel 200/100 30/15 0.300/0.300
KNL32/BP2-gcc 100/100 50/15 1.000/0.300
Vulcan/BP2-gcc 35/30 21/10 1.200/0.666
Vulcan/BP3-gcc /30 /10 /0.666
Vulcan/BP3-xlc /20 /10 /1.000

Vulcan/BP4-gcc /120 /10 /1.000

Crosscutting Technologies

Lightweight Performance Portability

CEED/OCCA is an open-source library that provides an unified API for programming different types of
devices, including CPUs, GPUs, Intel's Xeon Phi, FPGAs.

Features:

* Supported on many languages, such as | |
C++, C, and Fortran

* JIT compilation for kernels
* Single kernel language for all backends (OKL)

* Currently supports Serial, OpenMP, CUDA, |
and OpenCL backends. Works with MPI

* MIT License, http://www.libocca.org

* Extensible backend API, allowing for future
features. For example, support for unified memory N
in CUDA and mapped memory in OpenCL

S, \
\ EXASCALE
COMPUTING
\ PROJECT

11 Exascale Computing Project

OCCA optimizations for NVIDIA P100

23500 BP1: H025 mesh with 512 elements 2500 BP1: H0125 mesh with 4096 elements
T
—+— empirical bound based on d2d copies —+empirical bound based on d2d copies
~@ Kernel 1: No i i ~B Kernel 1: No i
—%— Kernel 2: shared memory instead of global —4— Kernel 2: shared memory instead of global
3000 [- Kernel 3: shared + registers 3000 [|-m Kernel 3: shared + registers
~A— Kernel 4: constant input variables ~#A—Kernel 4: constant input variables
-O- Kernel 5: padding -O—Kernel 5: padding
2500 || @~ Kernel &: Loop unroling 2500 ||~@~ Kernel &: Loop unroling
—-Kernel 7: less barriers —4-Kernel 7: less barriers
0 %3
& 2000 & 2000
[N o
o [e]
T I
@ 1500 G 1500
¥
A
1000 1000 - Z
- =
] A
500 ye 500 Y A=
W o et
% .
=] D B . S i
0 ! 0
0 5 10 15 0 5 10

Polynomial degree Polynomial degree

Crosscutting Technologies

Batched Computing Technology

* Matrix-free basis evaluation needs efficient APPLICATIONS
tensor contractions, e.g.,

Cil,iz,i} :ZAleBkJZJS
K

* CEED/MAGMA designed batched methods to split
the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C, = AT B,;, for range of i3 }

Batched DGEMMs on GPU Batched DGEMMs on ARM
(P100, 100K) (Tegra X1 : 4-core Cortex A57)
* Developed techniques needed for autotuning, code EZ: ram— ~ | s EMH
inlining, code generation (reshapes, etc.), algorithmic ¢ [m@=e=) 01y |l i
variants for different architectures. 5 w0 ?;‘f°'°' £ Pt
* Achieve 90+% of theoretically derived peaks. 0 ,,?Q"x g e ;.« suie
* Significantly outperform vendor libraries. -, /f\f‘f A P
* Released through MAGMA. o ikl 1l S s s |

0 5 10 15 2 2 30 »
Matrix size

9 Exascale Computing Project Matrix Size

MPICH CH4: lightweight device layer

» CH4: faster offload, better fast path/inlining/IPO

Nek5000 Mass-Matrix Inversion, Lite & Std MPI. 1l\{q}ekSOOO Mass-Matrix Inversion (Lite/Std)
g 1.25
(5] (0]
§ 10° % 12
<] E T
a 8
g g1is
= -
@ @ 11
c Q
=] =
s N=3 -
g 10° N=5 £10
= N=7 ©
2 x
£ —e—Lite N=3 1
k=1 —o—Lite N=5
—e—Lite N=7
0.95
10* 10? 10° 10* 10° 10* 10% 10° 10* 10°

Number of Points per MPI Rank: n/P Number of Points per MPI Rank: n/P

High-level API

.
) | . T v foo for| | w
s e f[5] B Sk

fio
X
Ue = B&,u Vue = gDéaeu
T[]/ /
B foo foq [B}
w=Y &l T Wy |.,” ’ EeW
; ° M (%f)] q{fuo il | (2] o)

coefficients at quadrature points

v

B and D are tensor contractions — independent of element

v

Choice of how to order and represent gathers & and scatters &7
» Who computes the metric terms and other coefficients?

v

Similar for Neumann/Robin and nonlinear boundary conditions

High-level AP| Proposal

[g] bow

on=x a8 eyt o[
= lo) | (%)] e nal | (%)

coefficients at quadrature points

v

Proposal:

» Setup: specify & and local ordering choice for f
» Apply: implementation handles batching, work buffers, and calling f(u, Vu).

v

User links to interface library

v

Backend implementation switchable at run-time
» Two-phase implementation enables connectivity analysis and JIT

HPGMG: a benchmark for supercomputers

> https://hpgnmg.org, hpgmg-forum@hpgmg.org mailing list

» Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van
Straalen, Erich Strohmeier, Rich Vuduc

» Gathering momentum, annual BoFs at Supercomputing since 2014
» Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 4th order
Finite Element compute- and cache-intensive, vectorizes, overlapping writes

» Full multigrid, well-defined, scale-free problem
» Matrix-free operators, Chebyshev smoothers

https://hpgmg.org

Full Multigrid (FMG): Prototypical Fast Algorithm

» start with coarse grid

» truncation error within one cycle

» about five work units for many problems

> no “fat” left to trim — robust to gaming

» distributed memory — restrict active process set using Z-order
» O(log? N) parallel complexity stresses network

» scale-free specification

» no mathematical reward for decomposition granularity
» don’t have to adjudicate “subdomain”

Multigrid design decisions

» Q finite elements

» Partition of work not partition of data — sharing/overlapping writes
» Qo is a middle-ground between lowest order and high order
» Matrix-free pays off, tensor-product element evaluation

v

Linear elliptic equation with manufactured solution
Mapped coordinates

» More memory streams, increase working set, longer critical path
No reductions

» Coarse grid is strictly more difficult than reduction
» Not needed because FMG is a direct method

Chebyshev/Jacobi smoothers, V(3,1) cycle

» Multiplicative smoothers hard to verify in parallel
» Avoid intermediate scales (like Block Jacobi/Gauss-Seidel)

v

v

v

v

Full Approximation Scheme

2017 HPGMG performance spectra
hpgmg-fv-201706.csv

—8— Cori
800 | —®— Sunway Taihulight
—8— Mira
—8— Hazel Hen
—&— Titan
600 | —@— Shaheen Il
—8— Edison
o
[Ty
o
G 400
200 A
0 ™
1071 10°

Time

101

HPGMG-FE on Edison. SuperMUC. Titan

DOF/s

7

Ul

HPGMG-FE Performance

lelO

e o edison np=131072
v v supermuc np=140608

Solve time (s)

[|m = titan np=262144 o 155B
° v
L v
Climate 12.9B \ ° 3098
s ¢ '
° [L \
\ ’ '
| [JoN
1.6B a N
n
\] = 6’/',.
&
3 L
n
o. Titan >200ms
|® .\ -
n h
w oy ‘ |] ‘ o Yo .
10 10° 10

500

400

300

200

100

=
Q

TFlop/s

MPI-3: Halos or contiguous memory?

00

(a) Contiguous (b) Noncontig Separate (c¢) Noncontig Padded

[Hoefler at al, 2013]

v

Common assumption: halo copying is expensive
Alternative is shared memory
Cache utilization for 162 local domain with halos
» Entire local region is contiguous; no partially filled cache lines
» 18%xsizeof (double) = 466568
16° local domain embedded in contiguous memory
» Avoid false sharing: align owned portion to cache-line boundaries
» 32 % 18 x 18 x sizeof (double) = 829448
» False sharing a serious problem if local sizes not divisible by line size

vy

v

Messaging from threaded code

» Off-node messages need to be packed and unpacked

» Many MPIl+threads apps pack in serial — bottleneck
» Extra software synchronization required to pack in parallel

» Formally O(log T) critical path, T threads/NIC context
» Typical OpenMP uses barrier — oversynchronizes

» MPI_THREAD_MULTIPLE — atomics and O(T) critical path

» Choose serial or parallel packing based on T and message sizes?
> |s there always at least one hardware NIC context/core?

» What is lowest overhead approach to message coalescing?

HPGMG-FV: flat MPI vs MPI+OpenMP (Aug 2014)

HPGMG-FV Solve Time (seconds)

———HPGMG-FV Solve Time|

0.40 1
~@—Mira
0.35 —e—Edison
~@-Hopper
0.30 —— =#&—Stampede(SNB)
./.‘/.— ~@-Peregrine
0.25
O-K
0.20 :"/ —; aé ~C=Edison(Flat MPI)
1) O-K (Flat MPI)
0.15 T1T| o 8 8_0__0 =A—Carver
o}
0.10 5—— 9 il o
: O
0.05
0.00
1 10 100 1,000 10,000 100,000

NUMA Nodes (2M DOF/NUMA Node)

X 4
1l
ﬁ

Scalable Matrix-Free Solvers

XASCALE DISCRETIZATIONS

Topics
= Preconditioning — critical for implicit apps P ETS C

¥ Active research: p-Multigrid, sparsification, Wr
High performance
preconditioners

DD, high-order operator-based, ...
= Partners: PETSc, hypre, KAUST, ...

CEED Contacts

= Jed Brown

= Tzanio Kolev

= Panayot Vassilevski
= Tim Warburton

= Paul Fischer = A\ e
12 Exascale Computing Project More info at: http://ceed.exascaleproject.org/linalg E\(\g }P PRODECT

Adaptive BDDC: robust coarsening/smoothing

0.8 - -
08 - os
L) -

0.2 -

6 o

[Mandel and Sousedik 2010]

» Theory: Mandel, Sousedik, Spillane,
Pechstein, Dohrmann, Widlund

» Collaboration with Stefano Zampini
(author of PETSc’'s PCBDDC)

only low-order continuity between
subdomains

corrected by more technical subdomain
smoother

» “deluxe” face balancing operator

adaptive coarse spaces

» solve face eigenproblems

» choose coarse space using eigenvalue
threshold Ainresn

> Aihreshold @ sharp, analytic function of
global condition number

guarantees convergence rate, not
complexity — adaptive agglomeration

Implicit Runge-Kutta and MatKAIJ: “sparse” Kronecker products

u=F(u)
34 a1 s 4
=u"+h L F
Vs as1 ' Adss Vs
S—— —
Y A

u™ = u"+hbTF(Y)
G=1hL®RS+J®Is

J is parallel and sparse, S is small and dense

More general than multiple RHS (multivectors)

Compare J ® Is to multiple right hand sides in row-major
Stream J through cache once, same efficiency as multiple RHS
Unintrusive compared to spatial-domain vectorization or s-step

vV v vV.VvYy

