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Project Overview
Goals & Team

* CEED is focused on the development of next-generation discretization software and algorithms
to enable efficient simulations for a wide range of science applications on future HPC systems.

* Funding: $3.0M/year, 2 labs (LLNL, ANL), 5 universities
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Project Overview

Co-design Motifs

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh v curved meshes,
v unstructured AMR V optimized low-order support

incompressible SEM /
SC

6™ order DNS turbulence (Nek)

compressible FEM /

10" order basis function non-conforming AMR, 2" order mesh 2" order compressible shock hydro (MFEM)
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High-Order Software Ecosystem

P Awamws f, julia ‘
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OCCAAPI

Batched BLAS

CPUS GPUs  Coprocessors

High-order Meshes Unstructured AMR

A=P"G"B" DBGP]

PETSc

e LA
preconditioners
Scalable matrix-free solvers High-Order Operator Format General Interpolation High-Order Visualization
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Crosscutting Technologies

CEED Software Products

CEED:'s library model enables ECP apps to easily take CEED'’s proxies and general purpose libs
advantage of the new discretization technologies target ECP vendors, STs, broader communit
* state-of-the art CEED discretization libraries * Ceedlings - CEED kernels, bake-off probs & miniapps
v better exploit the hardware to deliver significant performance v main tools to engage vendors & external projects
gain over conventional methods * CEED broadly applicable libraries

v based on MFEM/Nek, low & high-level APIs M A G M A w

’ icl.cs.utkedu/magma libocca.org

LAPACK for GPUs, multi/many-core Lightweight performance portability

P U m‘i Holmes

Parallel Unstructured Mesh Infrastructure P ETSC

nek5000.mcs.anl.gov mfem.org

High-performance spectral elements Scalable high-order finite elements

Main deliverable: all CEED software freely available on GitHub at https://github.com/CEED
New releases: mfem-3.3, gslib, Laghos and NekCEM ceedling, ...
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Applicable to variety of physics

ECP

Compressible flow (ALE, 8t order)
H(grad) -, H(curl) v H(div) RN
“nodes” “edges” “faces” "zones"

High-order High-order High-orde
kinematics MHD

rad. diff.

High-order
de Rham complex

thermaodynamics

Linear, quadratic and cubic finite element
spaces on curved meshes
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Performance of assembled versus unassembled

bytes/dof

tensor b =1
-l tensorb=3
—<— tensor-qstore b=1 [ 102
-<- tensor-gstore b =3
—@— assembled b=1
-@- assembled b =3

polynomial order

> Arithmetic intensity for Q, elements

T T T T
3 4 5 6 7

polynomial order

> < } (assembled), ~ 10 (unassembled), ~ 5 to 10 (hardware)
» store Jacobian information at Gauss quadrature points, can use AD

flops/dof



Performance versatility: n; > and ¢ /-

P> Suppose a linear scaling algorithm
» Let r(n) be the performance rate (e.g., DOF/second or GF/s) for local problem size
n=N/P
> Let rmax = max,r(n) be the peak attainable performance
> i =min{n:r(n) > Jrmax}
> Local problem sizes n < ny/, will not yield acceptable efficiency
>t/ =2 2/ max
> Time to solution less than t; , is not feasible with acceptable efficiency



2017 HPGMG performance spectra
hpgmg-fv-201706.csv
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CEED-MS6
CEED Bake-Off Problems

BP1: Solve {Bu=f}, where {B} is the mass matrix.

BP2: Solve the vector system {Bu=f} with {B} from BP1.

S

‘wopaal} Jo seaibaq

BP3: Solve {Au=f}, where {A} is the Poisson operator.

Processors

BP4: Solve the vector system {Au=f} with {A} from BP3.

* Range of polynomial orders: {p=1, 2,...,8}, at least. [z] EE

* Cover range of sizes: from 1 element/MPI rank up to the memory limit. ' E] [Z”Z]

B
i

* BP1 and BP2 are relevant for many hyperbolic substeps in transport
problems. BP3 and BP4 reflect pressure, momentum, and diffusion
updates in fluid/thermal transport.

wopaayy jo sealbaq

Processors

Vector forms 'BP2 and BP4' re\(eal benefits of increased data reuse BP terminology: T-
and of amortized communication overhead. and E-vectors of HO
__dofs

* Benchmark repo: https://github.com/CEED/benchmarks E\(C\\P EStE TG
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. _deal.ll (512 nodes, 32 tasks/node), gcc, BP1

-Nek5000 (512 nodes, 32 tasks/node), xIc, BP1 . MFEM (512 nodes, 32 tasks/node), xIc, BP1
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(a) BP1 Nek5000 (b) BP1 MFEM (c) BP1 deal.ll

Figure: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right) on BG/Q with varying
polynomial order (p = 1, ..., 16) with the number of quadrature points (g = p+2). The number cpu
cores P =8,192.
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on KNL: Nek5000 and MFEM

Config: Nek5000 linux (1 node, 32 tasks/node), intel, bpl, PA
B b 800 T T 7T

o o p=6,q=p+2
oo p=7,q=p+2
o o p=8,q=p+2

il

-- 600 iter/s
— 6000 iter/s
105 1 2 3 4 S 6
10 10 10 10 10 10 10

Points per compute node

Nek5000 n1/2 = 15/(, t1/2 = 150”3

> BG/Q has similar performance
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Config: MFEM linux (1 node, 32 tasks/node), intel, bpl_v1, PA
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Crosscutting Technologies

Lightweight Performance Portability

CEED/OCCA is an open-source library that provides an unified API for programming different types of
devices, including CPUs, GPUs, Intel's Xeon Phi, FPGAs.

Features:

* Supported on many languages, such as | |
C++, C, and Fortran

* JIT compilation for kernels
* Single kernel language for all backends (OKL)

* Currently supports Serial, OpenMP, CUDA, |
and OpenCL backends. Works with MPI

* MIT License, http://www.libocca.org

* Extensible backend API, allowing for future
features. For example, support for unified memory N
in CUDA and mapped memory in OpenCL

S, \
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OCCA performance on Summit (V100)

OCCA BK1 Performance on Summit

OCCA BK3 Performance on Summit
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Figure: BK1 and BK3 V100 performance: TFLOPS versus problem size n for different polynomial
orders, N. Operating on E-vectors (does not include element restriction &, &)




Crosscutting Technologies

Batched Computing Technology

* Matrix-free basis evaluation needs efficient APPLICATIONS
tensor contractions, e.g.,

Cil,iz,i} :ZAleBkJZJS
K

* CEED/MAGMA designed batched methods to split
the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C, = AT B,;, for range of i3 }

Batched DGEMMs on GPU Batched DGEMMs on ARM
(P100, 100K ) (Tegra X1 : 4-core Cortex A57)
* Developed techniques needed for autotuning, code EZ: ram— ~ | s EMH
inlining, code generation (reshapes, etc.), algorithmic ¢ [m@=e=) 01y |l i
variants for different architectures. 5 w0 ?;‘f°'°' £ Pt
* Achieve 90+% of theoretically derived peaks. 0 ,,?Q"x g e ;.« suie
* Significantly outperform vendor libraries. -, /f\f‘f A P
* Released through MAGMA. o ikl 1l S s s |

0 5 10 15 2 2 30 »
Matrix size

9 Exascale Computing Project Matrix Size




MPICH CH4: lightweight device layer

» CH4: faster offload, better fast path/inlining/IPO

Nek5000 Mass-Matrix Inversion, Lite & Std MPI. 1l\{q}ekSOOO Mass-Matrix Inversion (Lite/Std)
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libCEED: Code for Efficient Extensible Discretization

vvyyy

v

BSD-2 license, C library with Fortran interface
Releases: v0.1 (January), v0.2 (March), v0.3 (imminent)

Purely algebraic interface
Extensible backends

» CPU: reference, vectorized
» OCCA (just-in-time compilation): CPU, OpenMP, OpenCL, CUDA
> MAGMA

Platform for collaboration with vendors

Minimal assumptions about execution environment, parallel decomposition
Primary target: high order finite element methods

> H' H(div), H(curl)

» also of interest to spectral difference, etc.

» Exploit tensor product structure when possible
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global domain sub-domains elements quadrature
all (shared) dofs device (local) dofs element dofs point values /)
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T-vector L-vector E-vector Q-vector
------ Element operations (dense) ------»
o libCEED Operator --------=------------»

Dttt Global problem -----=------------------------or



Quadrature Function
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) | . T v foo for| | w
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coefficients at quadrature points

> B and By are tensor contractions — independent of element geometry
» Choice of how to order and represent gathers & and scatters &7

> Who computes the metric terms and other coefficients?

» Similar for Neumann/Robin and nonlinear boundary conditions



Quadrature Functions

» Multiple inputs and outputs
» Independent operations at each of Q quadrature points
» Ordering and number of elements not specified

int L2residual(void *ctx, CeedInt Q,
const CeedScalar *const in[],
CeedScalar *const out[]) {
const CeedScalar *u = in[0], *rho = in[1], *target = in[2];
CeedScalar *v = out[0];
for (CeedInt i=0; i<Q; i++)
v[i] = rho[i] * (ul[i] - target[il);
return O;



Element restriction &,

Conforming homogeneous mesh: boolean matrix with homogeneous block size
Non-conforming mesh: anchored rows have linear combination

Nek5000-style E-vector: indexed identity

libCEED backends are allowed to reorder, compress, etc.

vVvyYyyvyy

May be applied all at once or in batches



libCEED Operator

A=2T £TBDBE &
N——
CeedOperator

> element restriction &, basis B, quadrature function D
CeedOperatorCreate(ceed, qf_L2residual, &op);
CeedOperatorSetField(op, "u", E, Basis, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op, "rho", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, rho);
CeedOperatorSetField(op, "target", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, target);
CeedOperatorSetField(op, "v", E, Basis, CEED_VECTOR_ACTIVE);



Vectorization techniques

» Vectorize within a single high-order element
» Minimal working set (as small as one element)
» Specialized implementation for different degree/# quadrature points
» Hard to avoid cross-lane operations at modest degree
»> Nek5000

> Vectorize across elements in batches [i,j,k,e]

» Working set has at least vector length number of elements (e.g., 8)
» Generic implementation is easy to optimize; no cross-lane operations
» HPGMG-FE, Deal.ll (Kronbichler and Kormann), MFEM (new)



MFEM vectorization performance
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HPGMG: a benchmark for supercomputers

> https://hpgmg.org

> Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van
Straalen, Erich Strohmeier, Rich Vuduc

» Annual BoFs at Supercomputing since 2014
» Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 4th order
Finite Element compute- and cache-intensive, vectorizes, overlapping writes

» Full multigrid, well-defined, scale-free problem
» Matrix-free operators, Chebyshev smoothers


https://hpgmg.org

Full Multigrid (FMG): Prototypical Fast Algorithm

vvyyvyVvVvyy

v

start with coarse grid

truncation error within one cycle

about five work units for many problems

no “fat” left to trim — robust to gaming

distributed memory — restrict active process set using Z-order
> O (log? N) parallel complexity stresses network

scale-free specification

» no mathematical reward for decomposition granularity
» don’t have to adjudicate “subdomain”



HPGMG-FE on Edison. SuperMUC. Titan
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Outlook

v
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libCEED is interested in contributors and friendly users

GPU performance optimizations in progress
Cache versus vectorization tradeoffs

» Backends should automatically choose internal versus external vectorization
» Choice depends on architecture, element size, number of fields

Throughput versus latency optimizations

Even/odd performance optimization

Incorporate algorithmic differentiation

Developing exchange/storage interfaces for high-order fields
Many other activities to improve high order ecosystem



