
On Performance Portability for Unstructured High-order Finite
Element Computations

Jed Brown and Jeremy Thompson (CU Boulder)
Collaborators:

Jean-Sylvain Camier, Veselin Dobrev, and Tzanio Kolev (LLNL)
Misun Min (ANL)

David Medina (Two Sigma/LLNL)
Kasia Swirydowicz and Tim Warburton (Virginia Tech)

Thilina Rathnayake and Paul Fischer (University of Illinois)

SIAM Annual Meeting, 2018-07-09

2 Exascale Computing Project

• CEED is focused on the development of next-generation discretization software and algorithms
to enable efcient simulations for a wide range of science applications on future HPC systems.

• Funding: $3.0M/year, 2 labs (LLNL, ANL), 5 universities

Goals & Team

30+ researchers

Project Overview

3 Exascale Computing Project

Co-design Motifs

in
c
o
m

p
re

s
s
ib

le
 S

E
M

 /

S
C

c
o
m

p
re

s
s
ib

le
 F

E
M

 /

N
N

S
A

Project Overview

7 Exascale Computing Project

General Interpolation

High-Order Software Ecosystem

High-order Meshes Unstructured AMR Tensor contractions

Scalable matrix-free solvers High-Order Operator Format

PETSc

More info at: http://ceed.exascaleproject.org/fe

High-Order Visualization

Performance portability

OCCA

www.libocca.org

x86Xeon
Phi

AMD
GPU

NVIDIA
GPU

OpenCL

NVIDIA
CUDA Threads

OCCA API

OCCA is an open-source library that facilitates programming in an environment
containing different types of devices. We abstract devices and let the user pick at run-
time, for example: CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

Features include:

• JIT compilation for kernels

• Single kernel language for all
backends (OKL)

• Works with MPI

• API in multiple languages

• MIT License

• Extensible backend API, allowing
for future features. For example,
we support unified memory in
CUDA and mapped memory in
OpenCL.

7 Exascale Computing Project

CEED Software Products
Crosscutting Technologies

Main deliverable: all CEED software freely available on GitHub at https://github.com/CEED
New releases: mfem-3.3, gslib, Laghos and NekCEM ceedling, …

CEED’s library model enables ECP apps to easily take
advantage of the new discretization technologies

CEED’s proxies and general purpose libs
target ECP vendors, STs, broader community

GSLIB

Holmes
PETSc

Applicable to variety of physics

Linear, quadratic and cubic finite element
spaces on curved meshes

High-order
MHD

High-order
rad. diff.

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “zones”“edges” “faces”

High-order
kinematics

High-order
thermodynamics

Compressible flow (ALE, 8th order)

de Rham complex

Performance of assembled versus unassembled

1 2 3 4 5 6 7

polynomial order

102

103

104

by
te

s/
d

o
f

1 2 3 4 5 6 7

polynomial order

102

103

fl
o

p
s/

d
o

f

tensor b = 1

tensor b = 3

tensor-qstore b = 1

tensor-qstore b = 3

assembled b = 1

assembled b = 3

I Arithmetic intensity for Qp elements
I < 1

4 (assembled), ≈ 10 (unassembled), ≈ 5 to 10 (hardware)

I store Jacobian information at Gauss quadrature points, can use AD

Performance versatility: n1/2 and t1/2

I Suppose a linear scaling algorithm

I Let r(n) be the performance rate (e.g., DOF/second or GF/s) for local problem size
n = N/P

I Let rmax =maxn r(n) be the peak attainable performance
I n1/2 =min{n : r(n)≥ 1

2 rmax}
I Local problem sizes n < n1/2 will not yield acceptable efficiency

I t1/2 = 2n1/2/rmax

I Time to solution less than t1/2 is not feasible with acceptable efficiency

2017 HPGMG performance spectra

19 Exascale Computing Project

BP1: Solve {Bu=f}, where {B} is the mass matrix.

BP2: Solve the vector system {Bui=fi} with {B} from BP1.

BP3: Solve {Au=f}, where {A} is the Poisson operator.

BP4: Solve the vector system {Aui=fi} with {A} from BP3.

• Range of polynomial orders: {p=1, 2,...,8}, at least.
• Cover range of sizes: from 1 element/MPI rank up to the memory limit.

• BP1 and BP2 are relevant for many hyperbolic substeps in transport
problems. BP3 and BP4 refect pressure, momentum, and difusion
updates in fuid/thermal transport.

• Vector forms BP2 and BP4 reveal benefts of increased data reuse
and of amortized communication overhead.

• Benchmark repo: https://github.com/CEED/benchmarks

CEED-MS6
CEED Bake-Of Problems

BP terminology: T-
and E-vectors of HO

dofs

101 102 103 104 105 106 107

Points per compute node
0

1

2

3

4

5

6

7

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s] 1e7Nek5000 (512 nodes, 32 tasks/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
p=9, q=p+2
p=10, q=p+2
p=12, q=p+2
p=13, q=p+2
p=14, q=p+2
p=15, q=p+2
p=16, q=p+2

(a) BP1 Nek5000

101 102 103 104 105 106 107

Points per compute node
0

1

2

3

4

5

6

7

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s] 1e7 MFEM (512 nodes, 32 tasks/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
p=9, q=p+2
p=10, q=p+2
p=11, q=p+2
p=12, q=p+2
p=13, q=p+2
p=14, q=p+2
p=15, q=p+2
p=16, q=p+2

(b) BP1 MFEM

101 102 103 104 105 106 107

Points per compute node
0

1

2

3

4

5

6

7

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s] 1e7 deal.II (512 nodes, 32 tasks/node), gcc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
p=9, q=p+2
p=10, q=p+2
p=11, q=p+2
p=12, q=p+2
p=13, q=p+2
p=14, q=p+2
p=15, q=p+2
p=16, q=p+2

(c) BP1 deal.II

Figure: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right) on BG/Q with varying
polynomial order (p = 1, ...,16) with the number of quadrature points (q = p+2). The number cpu
cores P = 8,192.

BP1 on KNL: Nek5000 and MFEM

101 102 103 104 105 106 107

Points per compute node

105

106

107

108

109

[D
OF

s
x

CG
 it

er
at

io
ns

] /
 [c

om
pu

te
 n

od
es

 x
 s

ec
on

ds
]

Config: Nek5000 linux (1 node, 32 tasks/node), intel, bp1, PA

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2

p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
600 iter/s
6000 iter/s

Nek5000 n1/2 = 15k , t1/2 = 150µs

101 102 103 104 105 106 107

Points per compute node

105

106

107

108

109

[D
OF

s
x

CG
 it

er
at

io
ns

] /
 [c

om
pu

te
 n

od
es

 x
 s

ec
on

ds
]

Config: MFEM linux (1 node, 32 tasks/node), intel, bp1_v1, PA

p=1, q=p+2
p=1, q=p+1
p=2, q=p+2
p=2, q=p+1
p=3, q=p+2
p=4, q=p+2

p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
600 iter/s
6000 iter/s

MFEM n1/2 = 10k , t1/2 = 400µs

I BG/Q has similar performance

11 Exascale Computing Project

Lightweight Performance Portability
Crosscutting Technologies

CEED/OCCA is an open-source library that provides an unifed API for programming diferent types of
devices, including CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

OCCA

www.libocca.org

x86Xeon
Phi

AMD
GPU

NVIDIA
GPU

OpenCL

NVIDIA
CUDA Threads

OCCA API

OCCA is an open-source library that facilitates programming in an environment
containing diferent types of devices. We abstract devices and let the user pick at run-
time, for example: CPUs, GPUs, Intel’s Xeon Phi, FPGAs.

Features include:

• JIT compilation for kernels

• Single kernel language for all
backends (OKL)

• Works with MPI

• API in multiple languages

• MIT License

• Extensible backend API, allowing
for future features. For example,
we support unified memory in
CUDA and mapped memory in
OpenCL.

Features:
• Supported on many languages, such as

C++, C, and Fortran
• JIT compilation for kernels
• Single kernel language for all backends (OKL)
• Currently supports Serial, OpenMP, CUDA,

and OpenCL backends. Works with MPI
• MIT License, http://www.libocca.org
• Extensible backend API, allowing for future

features. For example, support for unifed memory
in CUDA and mapped memory in OpenCL

OCCA performance on Summit (V100)

100 101 102 103 104 105 106 107

Number of gridpoints

0

1

2

3

4

5

TF
LO

PS
, n

OCCA BK1 Performance on Summit
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
N=13
N=14

(a) BK1 Summit

100 101 102 103 104 105 106 107

Number of gridpoints

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TF
LO

PS
, n

OCCA BK3 Performance on Summit
N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10
N=11
N=12
N=13
N=14

(b) BK3 Summit

Figure: BK1 and BK3 V100 performance: TFLOPS versus problem size n for different polynomial
orders, N. Operating on E-vectors (does not include element restriction E ,E T)

9 Exascale Computing Project

• Matrix-free basis evaluation needs efcient
tensor contractions, e.g.,

• CEED/MAGMA designed batched methods to split

the computation in many small high-intensity GEMMs,
grouped together (batched) for efcient execution:

 Batch_{ Ci3 = AT Bi3, for range of i3 }

• Developed techniques needed for autotuning, code
inlining, code generation (reshapes, etc.), algorithmic
variants for diferent architectures.

• Achieve 90+% of theoretically derived peaks.
• Signifcantly outperform vendor libraries.
• Released through MAGMA.

Batched DGEMMs on GPU
(P100, 100K)

Batched Computing Technology

i1,i2,i3C =
k,i1A k,i2,i3B

k

å

Crosscutting Technologies

Batched DGEMMs on ARM
(Tegra X1 : 4-core Cortex A57)

MPICH CH4: lightweight device layer

I CH4: faster offload, better fast path/inlining/IPO

101 102 103 104 105

Number of Points per MPI Rank: n/P

105

106

[p
oi

nt
-it

er
at

io
ns

]/[
pr

oc
es

so
r-

se
co

nd
]

Nek5000 Mass-Matrix Inversion, Lite & Std MPI.

Std N=3
Std N=5
Std N=7
Lite N=3
Lite N=5
Lite N=7

101 102 103 104 105

Number of Points per MPI Rank: n/P

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

R
at

io
: L

ite
/S

td
 P

er
fo

rm
an

ce

Nek5000 Mass-Matrix Inversion (Lite/Std)

N=3
N=5
N=7

libCEED: Code for Efficient Extensible Discretization

I BSD-2 license, C library with Fortran interface

I Releases: v0.1 (January), v0.2 (March), v0.3 (imminent)

I Purely algebraic interface
I Extensible backends

I CPU: reference, vectorized
I OCCA (just-in-time compilation): CPU, OpenMP, OpenCL, CUDA
I MAGMA

I Platform for collaboration with vendors

I Minimal assumptions about execution environment, parallel decomposition
I Primary target: high order finite element methods

I H1,H(div),H(curl)
I also of interest to spectral difference, etc.
I Exploit tensor product structure when possible

T-vector L-vector E-vector Q-vector

global domain
all (shared) dofs

sub-domains
device (local) dofs

elements
element dofs

quadrature
point values

Element operations (dense)
libCEED Operator

Global problem

Quadrature Function

vT F(u)∼
∫

Ω
v · f0(u,∇u)+∇v : f1(u,∇u) vT Jw ∼

∫
Ω

[
v

∇v

]T [
f0,0 f0,1
f1,0 f1,1

][
w

∇w

]
ue = BEeu ∇ue =

∂X
∂x

B∇Eeu

Jw = ∑
e

E T
e

[
B

B∇

]T
[

I (
∂X
∂x

)T

]
Wq

[
f0,0 f0,1
f1,0 f1,1

][I (
∂X
∂x

)]
︸ ︷︷ ︸

coefficients at quadrature points

[
B

B∇

]
Eew

I B and B∇ are tensor contractions – independent of element geometry

I Choice of how to order and represent gathers E and scatters E T

I Who computes the metric terms and other coefficients?

I Similar for Neumann/Robin and nonlinear boundary conditions

Quadrature Functions

I Multiple inputs and outputs

I Independent operations at each of Q quadrature points

I Ordering and number of elements not specified

int L2residual(void *ctx, CeedInt Q,
const CeedScalar *const in[],
CeedScalar *const out[]) {

const CeedScalar *u = in[0], *rho = in[1], *target = in[2];
CeedScalar *v = out[0];
for (CeedInt i=0; i<Q; i++)

v[i] = rho[i] * (u[i] - target[i]);
return 0;

}

Element restriction Ee

I Conforming homogeneous mesh: boolean matrix with homogeneous block size

I Non-conforming mesh: anchored rows have linear combination

I Nek5000-style E-vector: indexed identity

I libCEED backends are allowed to reorder, compress, etc.

I May be applied all at once or in batches

libCEED Operator

A = PT E T BDBE︸ ︷︷ ︸
CeedOperator

P

I element restriction E , basis B, quadrature function D
CeedOperatorCreate(ceed, qf_L2residual, &op);
CeedOperatorSetField(op, "u", E, Basis, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op, "rho", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, rho);
CeedOperatorSetField(op, "target", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, target);
CeedOperatorSetField(op, "v", E, Basis, CEED_VECTOR_ACTIVE);

Vectorization techniques

I Vectorize within a single high-order element
I Minimal working set (as small as one element)
I Specialized implementation for different degree/# quadrature points
I Hard to avoid cross-lane operations at modest degree
I Nek5000

I Vectorize across elements in batches [i,j,k,e]
I Working set has at least vector length number of elements (e.g., 8)
I Generic implementation is easy to optimize; no cross-lane operations
I HPGMG-FE, Deal.II (Kronbichler and Kormann), MFEM (new)

MFEM vectorization performance

10 4 10 3 10 2 10 1

Time per iteration
0

1

2

3

4

5

6

7

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s] 1e7 MFEM (512 nodes, 32 tasks/node), xlc, BP1

p=1, q=p+2
p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
p=9, q=p+2
p=10, q=p+2
p=11, q=p+2
p=12, q=p+2
p=13, q=p+2
p=14, q=p+2
p=15, q=p+2
p=16, q=p+2

(a) Cetus internal vectorization

10 4 10 3 10 2 10 1

Time per iteration
0

1

2

3

4

5

6

7

8

[D
OF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s] 1e7 MFEM (512 nodes, 32 tasks/node), xlc, BP1

p=2, q=p+2
p=3, q=p+2
p=4, q=p+2
p=5, q=p+2
p=6, q=p+2
p=7, q=p+2
p=8, q=p+2
p=9, q=p+2
p=10, q=p+2
p=11, q=p+2
p=12, q=p+2
p=13, q=p+2
p=14, q=p+2

(b) Cetus external vectorization

Figure: Internal versus external element vectorization for BP1.

HPGMG: a benchmark for supercomputers

I https://hpgmg.org
I Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van

Straalen, Erich Strohmeier, Rich Vuduc

I Annual BoFs at Supercomputing since 2014

I Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 4th order
Finite Element compute- and cache-intensive, vectorizes, overlapping writes

I Full multigrid, well-defined, scale-free problem

I Matrix-free operators, Chebyshev smoothers

https://hpgmg.org

Full Multigrid (FMG): Prototypical Fast Algorithm

`coarse `coarse

`fineIh
H IH

h , Î
H
h Ih

H

I start with coarse grid
I truncation error within one cycle
I about five work units for many problems
I no “fat” left to trim – robust to gaming
I distributed memory – restrict active process set using Z-order

I O(log2 N) parallel complexity stresses network
I scale-free specification

I no mathematical reward for decomposition granularity
I don’t have to adjudicate “subdomain”

HPGMG-FE on Edison, SuperMUC, Titan

Titan >200ms

v
a
r
ia

b
ilit

y

1.6B

155B

309B
12.9B

Outlook

I libCEED is interested in contributors and friendly users

I GPU performance optimizations in progress
I Cache versus vectorization tradeoffs

I Backends should automatically choose internal versus external vectorization
I Choice depends on architecture, element size, number of fields

I Throughput versus latency optimizations

I Even/odd performance optimization

I Incorporate algorithmic differentiation

I Developing exchange/storage interfaces for high-order fields

I Many other activities to improve high order ecosystem

