On Performance Portability for Unstructured High-order Finite
Element Computations

Jed Brown and Jeremy Thompson (CU Boulder)
Collaborators:
Jean-Sylvain Camier, Veselin Dobrev, and Tzanio Kolev (LLNL)
Misun Min (ANL)
David Medina (Two Sigma/LLNL)
Kasia Swirydowicz and Tim Warburton (Virginia Tech)
Thilina Rathnayake and Paul Fischer (University of lllinois)

SIAM Annual Meeting, 2018-07-09

Project Overview
Goals & Team

* CEED is focused on the development of next-generation discretization software and algorithms
to enable efficient simulations for a wide range of science applications on future HPC systems.

* Funding: $3.0M/year, 2 labs (LLNL, ANL), 5 universities

g CEED

Brown Shephard 30+ researchers
° E W @j‘ @ u ’:\\ EXASCALE
E\(\g [S

2 Exascale Computing Project

Project Overview

Co-design Motifs

* PDE-based simulations on unstructured grids
* high-order and spectral finite elements

v any order space on any order mesh v curved meshes,
v unstructured AMR V optimized low-order support

incompressible SEM /
SC

6™ order DNS turbulence (Nek)

compressible FEM /

10" order basis function non-conforming AMR, 2" order mesh 2" order compressible shock hydro (MFEM)

" \
\ EXASCALE
E (l) P COMPUTING

3 Exascale Computing Project \\ PROJECT

2
b
17}
Q
Q
Eel
m
=]
N
=
=
S
=
3

q
E H

High-Order Software Ecosystem

P Awamws f, julia ‘
W W

OCCAAPI

Batched BLAS

CPUS GPUs Coprocessors

High-order Meshes Unstructured AMR

A=P"G"B" DBGP]

PETSc

e LA
preconditioners
Scalable matrix-free solvers High-Order Operator Format General Interpolation High-Order Visualization

",
E C\\ EXASCALE
. . (} P COMPUTING
7 Exascale Computing Project More info at: http://ceed.exascaleproject.org/fe ___ PROJECT

Crosscutting Technologies

CEED Software Products

CEED:'s library model enables ECP apps to easily take CEED'’s proxies and general purpose libs
advantage of the new discretization technologies target ECP vendors, STs, broader communit
* state-of-the art CEED discretization libraries * Ceedlings - CEED kernels, bake-off probs & miniapps
v better exploit the hardware to deliver significant performance v main tools to engage vendors & external projects
gain over conventional methods * CEED broadly applicable libraries

v based on MFEM/Nek, low & high-level APIs M A G M A w

’ icl.cs.utkedu/magma libocca.org

LAPACK for GPUs, multi/many-core Lightweight performance portability

P U m‘i Holmes

Parallel Unstructured Mesh Infrastructure P ETSC

nek5000.mcs.anl.gov mfem.org

High-performance spectral elements Scalable high-order finite elements

Main deliverable: all CEED software freely available on GitHub at https://github.com/CEED
New releases: mfem-3.3, gslib, Laghos and NekCEM ceedling, ...

y LE
‘ EX)

LE DISCRETIZATIONS

Applicable to variety of physics

ECP

Compressible flow (ALE, 8t order)
H(grad) -, H(curl) v H(div) RN
“nodes” “edges” “faces” "zones"

High-order High-order High-orde
kinematics MHD

rad. diff.

High-order
de Rham complex

thermaodynamics

Linear, quadratic and cubic finite element
spaces on curved meshes

[m]

) Q v

Performance of assembled versus unassembled

bytes/dof

tensor b =1
-l tensorb=3
—<— tensor-qstore b=1 [102
-<- tensor-gstore b =3
—@— assembled b=1
-@- assembled b =3

polynomial order

> Arithmetic intensity for Q, elements

T T T T
3 4 5 6 7

polynomial order

> < } (assembled), ~ 10 (unassembled), ~ 5 to 10 (hardware)
» store Jacobian information at Gauss quadrature points, can use AD

flops/dof

Performance versatility: n; > and ¢ /-

P> Suppose a linear scaling algorithm
» Let r(n) be the performance rate (e.g., DOF/second or GF/s) for local problem size
n=N/P
> Let rmax = max,r(n) be the peak attainable performance
> i =min{n:r(n) > Jrmax}
> Local problem sizes n < ny/, will not yield acceptable efficiency
>t/ =2 2/ max
> Time to solution less than t; , is not feasible with acceptable efficiency

2017 HPGMG performance spectra
hpgmg-fv-201706.csv

—8— Cori
800 | —®— Sunway Taihulight
—8— Mira
—8— Hazel Hen
—&— Titan
600 | —@— Shaheen Il
—8— Edison
o
[Ty
o
G 400
200 A
0 ™
1071 10°

Time

101

CEED-MS6
CEED Bake-Off Problems

BP1: Solve {Bu=f}, where {B} is the mass matrix.

BP2: Solve the vector system {Bu=f} with {B} from BP1.

S

‘wopaal} Jo seaibaq

BP3: Solve {Au=f}, where {A} is the Poisson operator.

Processors

BP4: Solve the vector system {Au=f} with {A} from BP3.

* Range of polynomial orders: {p=1, 2,...,8}, at least. [z] EE

* Cover range of sizes: from 1 element/MPI rank up to the memory limit. ' E] [Z”Z]

B
i

* BP1 and BP2 are relevant for many hyperbolic substeps in transport
problems. BP3 and BP4 reflect pressure, momentum, and diffusion
updates in fluid/thermal transport.

wopaayy jo sealbaq

Processors

Vector forms 'BP2 and BP4' re\(eal benefits of increased data reuse BP terminology: T-
and of amortized communication overhead. and E-vectors of HO
__dofs

* Benchmark repo: https://github.com/CEED/benchmarks E\(C\\P EStE TG

19 Exascale Computing Project PROJECT

. _deal.ll (512 nodes, 32 tasks/node), gcc, BP1

-Nek5000 (512 nodes, 32 tasks/node), xIc, BP1 . MFEM (512 nodes, 32 tasks/node), xIc, BP1

7

~

—e— p=1,q=p+2

)
>

t

o

)
w
)

>
. q=p+2
+ p=12,q=p+2
- p=13,9=p+2
a=p+2
p=15,4=p+2

o p=16,4=p+2

kS
s

1232231

IS

w
w
w

p=16,q=p+2

p=16,9=p+2

N
N

,J

[DOFs x CG iterations] / [compute nodes x seconds]
[DOFs x CG iterations] / [compute nodes x seconds]
[DOFs x CG iterations] / [compute nodes x seconds]

._4_0/‘//:
q 3 102 10° 10 10° 10° 107 q i 102 10° 10% 10° 10° 107 10! 102 10° 104 10° 108
Points per compute node Points per compute node Points per compute node
(a) BP1 Nek5000 (b) BP1 MFEM (c) BP1 deal.ll

Figure: BP1 results of Nek5000 (left), MFEM (center), and deal.ii (right) on BG/Q with varying
polynomial order (p = 1, ..., 16) with the number of quadrature points (g = p+2). The number cpu
cores P =8,192.

BP1

10°

-
%

"
)

[DOFs x CG iterations] / [compute nodes x seconds]
-
S

on KNL: Nek5000 and MFEM

Config: Nek5000 linux (1 node, 32 tasks/node), intel, bpl, PA
B b 800 T T 7T

o o p=6,q=p+2
oo p=7,q=p+2
o o p=8,q=p+2

il

-- 600 iter/s
— 6000 iter/s
105 1 2 3 4 S 6
10 10 10 10 10 10 10

Points per compute node

Nek5000 n1/2 = 15/(, t1/2 = 150”3

> BG/Q has similar performance

10

Config: MFEM linux (1 node, 32 tasks/node), intel, bpl_v1, PA

[DOFs x CG iterations] / [compute nodes x seconds]
=
oS

600 iter/s
6000 iter/s

10° 10 10
Points per compute node

MFEM n1/2 = 10k, t1/2 = 400‘“3

Crosscutting Technologies

Lightweight Performance Portability

CEED/OCCA is an open-source library that provides an unified API for programming different types of
devices, including CPUs, GPUs, Intel's Xeon Phi, FPGAs.

Features:

* Supported on many languages, such as | |
C++, C, and Fortran

* JIT compilation for kernels
* Single kernel language for all backends (OKL)

* Currently supports Serial, OpenMP, CUDA, |
and OpenCL backends. Works with MPI

* MIT License, http://www.libocca.org

* Extensible backend API, allowing for future
features. For example, support for unified memory N
in CUDA and mapped memory in OpenCL

S, \
\ EXASCALE
COMPUTING
\ PROJECT

11 Exascale Computing Project

OCCA performance on Summit (V100)

OCCA BK1 Performance on Summit

OCCA BK3 Performance on Summit

-o— N=1
5 N=2 3.0{ @ N=1
o Ne3 N=2
- o N=3
-o— N=4
Nes 254 @ N=4
49 @ Nee - N=5
N:7 g N=6
_ 2.0 N=7
c N=8 = N=8
¢ 37 - n=9 4 —— N=9
% - z=i‘1) % 1.5 8 N=10
—o— N= .
El Ne12 e —8- N=11
21 - N= = -8~ N=12
—-o— N=13 1.04 - n=13
N=14 N=14
14
0.5
04 e—e—e— 0.01 oo Pt >
100 10t 102 103 10* 10° 10° 107 100 10! 102 103 10° 10° 10° 107

Number of gridpoints

(a) BK1 Summit

Number of gridpoints

(b) BK3 Summit

Figure: BK1 and BK3 V100 performance: TFLOPS versus problem size n for different polynomial
orders, N. Operating on E-vectors (does not include element restriction &, &)

Crosscutting Technologies

Batched Computing Technology

* Matrix-free basis evaluation needs efficient APPLICATIONS
tensor contractions, e.g.,

Cil,iz,i} :ZAleBkJZJS
K

* CEED/MAGMA designed batched methods to split
the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C, = AT B,;, for range of i3 }

Batched DGEMMs on GPU Batched DGEMMs on ARM
(P100, 100K) (Tegra X1 : 4-core Cortex A57)
* Developed techniques needed for autotuning, code EZ: ram— ~ | s EMH
inlining, code generation (reshapes, etc.), algorithmic ¢ [m@=e=) 01y |l i
variants for different architectures. 5 w0 ?;‘f°'°' £ Pt
* Achieve 90+% of theoretically derived peaks. 0 ,,?Q"x g e ;.« suie
* Significantly outperform vendor libraries. -, /f\f‘f A P
* Released through MAGMA. o ikl 1l S s s |

0 5 10 15 2 2 30 »
Matrix size

9 Exascale Computing Project Matrix Size

MPICH CH4: lightweight device layer

» CH4: faster offload, better fast path/inlining/IPO

Nek5000 Mass-Matrix Inversion, Lite & Std MPI. 1l\{q}ekSOOO Mass-Matrix Inversion (Lite/Std)
g 1.25
(5] (0]
§ 10° % 12
<] E T
a 8
g g1is
= -
@ @ 11
c Q
=] =
s N=3 -
g 10° N=5 £10
= N=7 ©
2 x
£ —e—Lite N=3 1
k=1 —o—Lite N=5
—e—Lite N=7
0.95
10* 10? 10° 10* 10° 10* 10% 10° 10* 10°

Number of Points per MPI Rank: n/P Number of Points per MPI Rank: n/P

libCEED: Code for Efficient Extensible Discretization

vvyyy

v

BSD-2 license, C library with Fortran interface
Releases: v0.1 (January), v0.2 (March), v0.3 (imminent)

Purely algebraic interface
Extensible backends

» CPU: reference, vectorized
» OCCA (just-in-time compilation): CPU, OpenMP, OpenCL, CUDA
> MAGMA

Platform for collaboration with vendors

Minimal assumptions about execution environment, parallel decomposition
Primary target: high order finite element methods

> H' H(div), H(curl)

» also of interest to spectral difference, etc.

» Exploit tensor product structure when possible

EXASCALE COMPUTING PAOJECT

A=PreTBT"DBEP

global domain sub-domains elements quadrature
all (shared) dofs device (local) dofs element dofs point values /)

T 2 BHEE - BROE 2 000
T BRI BRI EEEE
17 EHEE © EEEE Y D00

T-vector L-vector E-vector Q-vector
------ Element operations (dense) ------»
o libCEED Operator --------=------------»

Dttt Global problem -----=------------------------or

Quadrature Function

.
) | . T v foo for| | w
v F(U) /QV fO(U,VU)+VV-f1(UaVU) vidw /Q|:ij| |:f170 f1,1:| |:VW:|

X
Ue = B&,u Vue = ngcg’eu

w=Yel | | 7| w, oo o
- &7° By (‘LX> o fis

/

()|)

dx

coefficients at quadrature points

> B and By are tensor contractions — independent of element geometry
» Choice of how to order and represent gathers & and scatters &7

> Who computes the metric terms and other coefficients?

» Similar for Neumann/Robin and nonlinear boundary conditions

Quadrature Functions

» Multiple inputs and outputs
» Independent operations at each of Q quadrature points
» Ordering and number of elements not specified

int L2residual(void *ctx, CeedInt Q,
const CeedScalar *const in[],
CeedScalar *const out[]) {
const CeedScalar *u = in[0], *rho = in[1], *target = in[2];
CeedScalar *v = out[0];
for (CeedInt i=0; i<Q; i++)
v[i] = rho[i] * (ul[i] - target[il);
return O;

Element restriction &,

Conforming homogeneous mesh: boolean matrix with homogeneous block size
Non-conforming mesh: anchored rows have linear combination

Nek5000-style E-vector: indexed identity

libCEED backends are allowed to reorder, compress, etc.

vVvyYyyvyy

May be applied all at once or in batches

libCEED Operator

A=2T £TBDBE &
N——
CeedOperator

> element restriction &, basis B, quadrature function D
CeedOperatorCreate(ceed, qf_L2residual, &op);
CeedOperatorSetField(op, "u", E, Basis, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op, "rho", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, rho);
CeedOperatorSetField(op, "target", CEED_RESTRICTION_IDENTITY,

CEED_BASIS_COLOCATED, target);
CeedOperatorSetField(op, "v", E, Basis, CEED_VECTOR_ACTIVE);

Vectorization techniques

» Vectorize within a single high-order element
» Minimal working set (as small as one element)
» Specialized implementation for different degree/# quadrature points
» Hard to avoid cross-lane operations at modest degree
»> Nek5000

> Vectorize across elements in batches [i,j,k,e]

» Working set has at least vector length number of elements (e.g., 8)
» Generic implementation is easy to optimize; no cross-lane operations
» HPGMG-FE, Deal.ll (Kronbichler and Kormann), MFEM (new)

MFEM vectorization performance

Z g1 MFEM (512 nodes, 32 tasks/node), xlc, BP1 T g MFEM (512 nodes, 32 tasks/node), xlc, BP1
g —— p=1,q=p+2 g
p=2, q=p+2
o o p=3,q=p+2 97
N 61 o p=4, q=p+2 0
X | e p=s.a=pe2 x
) p=6, q=p+2 I3
Bs p=7,q=p+2 B
c p=8, q=p+2 c
o —e— p=9, q=p+2 1]
S | —e— p=10,q=p+2 55
g-4 —e— p=11, g=p+2 g
S —e— p=12, q=p+2 o
O | —— p=13,g=p+2 o4
-~ p=14, q=p+2 -~
i 3 p=15, q=p+2 w
_g p=16, q=p+2 ~ _5 3
= =
©2 o
£ £2
]]
(] 1 (]
x x 1
£ i
o o
Qo oo
=104 1073 1072 107t —10°* 1073 1072 107t
Time per iteration Time per iteration
(a) Cetus internal vectorization (b) Cetus external vectorization

Figure: Internal versus external element vectorization for BP1.

HPGMG: a benchmark for supercomputers

> https://hpgmg.org

> Mark Adams, Sam Williams (finite-volume), Jed (finite-element), John Shalf, Brian Van
Straalen, Erich Strohmeier, Rich Vuduc

» Annual BoFs at Supercomputing since 2014
» Implementations

Finite Volume memory bandwidth intensive, simple data dependencies, 4th order
Finite Element compute- and cache-intensive, vectorizes, overlapping writes

» Full multigrid, well-defined, scale-free problem
» Matrix-free operators, Chebyshev smoothers

https://hpgmg.org

Full Multigrid (FMG): Prototypical Fast Algorithm

vvyyvyVvVvyy

v

start with coarse grid

truncation error within one cycle

about five work units for many problems

no “fat” left to trim — robust to gaming

distributed memory — restrict active process set using Z-order
> O (log? N) parallel complexity stresses network

scale-free specification

» no mathematical reward for decomposition granularity
» don’t have to adjudicate “subdomain”

HPGMG-FE on Edison. SuperMUC. Titan

DOF/s

7

Ul

HPGMG-FE Performance

lelO

e o edison np=131072
v v supermuc np=140608

Solve time (s)

[|m = titan np=262144 o 155B
° v
L v
Climate 12.9B \ ° 3098
s ¢ '
° [L \
\ ’ '
| [JoN
1.6B a N
n
\] = 6’/',.
&
3 L
n
o. Titan >200ms
|® .\ -
n h
w oy ‘ |] ‘ o Yo .
10 10° 10

500

400

300

200

100

=
Q

TFlop/s

Outlook

v

vVvYyyvyy

libCEED is interested in contributors and friendly users

GPU performance optimizations in progress
Cache versus vectorization tradeoffs

» Backends should automatically choose internal versus external vectorization
» Choice depends on architecture, element size, number of fields

Throughput versus latency optimizations

Even/odd performance optimization

Incorporate algorithmic differentiation

Developing exchange/storage interfaces for high-order fields
Many other activities to improve high order ecosystem

