CEED Software Thrust and libCEED

Jed Brown, Jeremy Thompson, Valeria Barra (CU Boulder)
Yohann Dudouit, Jean-Sylvain Camier, Veselin Dobrev, and Tzanio Kolev (LLNL)
Misun Min, Oana Marin (ANL)
David Medina (Two Sigma/LLNL)
Thilina Rathnayake and Paul Fischer (University of Illinois)

CEED Annual Meeting, 2019-08-06
CEED 2.0 Software release (March)

- GSLIB-1.0.2
- HPGMG-0.4
- Laghos-2.0
- libCEED-0.4
- MAGMA-2.5.0
- MFEM-3.4
- Nek5000-17.0
- Nekbone-17.0
- NekCEM-7332619
- PETSc-3.11.1
- PUMI-2.2.0
- OCCA-1.0.8

- spack install ceed
- docker run -it -rm -v 'pwd':/ceed jedbrown/ceed bash
- sbatch --image docker:jedbrown/ceed job.sh
 ln job.sh: srun -n 64 shifter ./your-app
Resource requirements for assembled versus unassembled

- Arithmetic intensity for Q_p elements
 - $< \frac{1}{4}$ (assembled), ≈ 10 (unassembled), ≈ 5 to 10 (hardware)
- Store Jacobian information at Gauss quadrature points, can use AD
libCEED: Code for Efficient Extensible Discretization

- BSD-2 license, C library with Fortran interface
- Releases: v0.1–v0.3 (2018), v0.4 (March), v0.5 (imminent)
- Purely algebraic interface
- Extensible backends
 - CPU: reference, vectorized, XSMM
 - CUDA using NVRTC (Yohann Dudouit)
 - OCCA (just-in-time compilation): CPU, OpenMP, OpenCL, CUDA
 - MAGMA
- Platform for collaboration with vendors
- Minimal assumptions about execution environment, parallel decomposition
- Primary target: high order finite element methods
 - $H^1, H(\text{div}), H(\text{curl})$
 - also of interest to spectral difference, etc.
 - Exploit tensor product structure when possible
\[A = \mathcal{P}^T \mathcal{E}^T B^T D D E \mathcal{P} \]
Quadrature Function

\[v^T F(u) \sim \int_\Omega v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) \]

\[v^T Jw \sim \int_\Omega \begin{bmatrix} v \\ \nabla v \end{bmatrix}^T \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} \nabla w \end{bmatrix} \]

\[u = B_I \mathcal{E}_e u_L \]

\[\nabla u = \frac{\partial X}{\partial x} B_\nabla \mathcal{E}_e u_L \]

\[Jw = \sum_{e} \mathcal{E}_e^T \begin{bmatrix} B_I \\ B_\nabla \end{bmatrix}^T \begin{bmatrix} I \\ \left(\frac{\partial X}{\partial x} \right)^T \end{bmatrix} W_q \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} I \\ \left(\frac{\partial X}{\partial x} \right)^T \end{bmatrix} \begin{bmatrix} B_I \\ B_\nabla \end{bmatrix} \mathcal{E}_e w_L \]

- \(B \) and \(B_\nabla \) are tensor contractions – independent of element geometry
- Choice of how to order and represent gathers \(\mathcal{E} \) and scatters \(\mathcal{E}^T \)
- Who computes the metric terms and other coefficients?
- Similar for Neumann/Robin and nonlinear boundary conditions
Quadrature Functions

- Multiple inputs and outputs
- Independent operations at each of Q quadrature points
 - Ordering and number of elements not specified

```c
int L2residual(void *ctx, CeedInt Q,
               const CeedScalar *const in[],
               CeedScalar *const out[])
{
    const CeedScalar *u = in[0], *rho = in[1], *target = in[2];
    CeedScalar *v = out[0];
    for (CeedInt i=0; i<Q; i++)
        v[i] = rho[i] * (u[i] - target[i]);
    return 0;
}

CeedQFunctionAddInput(qf, "u", 1, CEED_EVAL_INTERP);
CeedQFunctionAddInput(qf, "rho", 1, CEED_EVAL_INTERP);
CeedQFunctionAddInput(qf, "target", 1, CEED_EVAL_INTERP);
CeedQFunctionAddOutput(qf, "v", 1, CEED_EVAL_INTERP);
```
Building Operators

\[v^T F(u) \sim \int_\Omega v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) \]

\[u = B \mathcal{E} e u_L \quad \nabla u = \frac{\partial X}{\partial x} B \mathcal{E} u_L \]

- CeedOperatorCreate(ceed, f, &op);
- CeedOperatorSetField(op, "velocity", \mathcal{E}, B, u_L);
- Apply: implementation handles batching, work buffers, and calling \(f(u, \nabla u) \).
- User links to interface library
- Backend implementation switchable at run-time
- Two-phase implementation enables connectivity analysis and JIT
libCEED Operator

\[A = \mathcal{P}^T \circ \mathcal{B}^T \circ \mathcal{D} \circ \mathcal{E} \circ \mathcal{P} \]

- quadrature function \(D \)
- For each field: element restriction \(E \), basis \(B \), where to find vector

  ```
  CeedOperatorCreate(ceed, qf_L2residual, &op);
  CeedOperatorSetField(op, "u", E, Basis, CEED_VECTOR_ACTIVE);
  CeedOperatorSetField(op, "rho", E_id, CEED_BASIS_COLOCATED, rho);
  CeedOperatorSetField(op, "target", E_id, CEED_BASIS_COLOCATED, target);
  CeedOperatorSetField(op, "v", E, Basis, CEED_VECTOR_ACTIVE);
  CeedOperatorApply(op, u, v, &request);
  ```
Element restriction \mathcal{E}_e

- Conforming homogeneous mesh: boolean matrix with homogeneous block size
- Non-conforming mesh: anchored rows have linear combination
- Nek5000/DG-style E-vector: indexed identity
- libCEED backends are allowed to reorder, compress, etc.
- May be applied all at once or in batches
- CeedOperator implementation chooses if/how to fuse
Vectorization techniques

- Vectorize within a single high-order element
 - Minimal working set (as small as one element)
 - Specialized implementation for different degree/# quadrature points
 - Hard to avoid cross-lane operations at modest degree
 - Nek5000

- Vectorize across elements in batches $[i, j, k, e]$
 - Working set has at least vector length number of elements (e.g., 8)
 - Generic implementation is easy to optimize; no cross-lane operations
 - HPGMG-FE, Deal.II (Kronbichler and Kormann), MFEM (new)
BP1: Skylake AVX n vs t

![Graphs showing performance comparison](image-url)

- **Points per compute node**
 - 0.0 to 1.4 on a logarithmic scale.
 - Y-axis: $[\text{DOFs} \times \text{CG iterations}] / [\text{compute nodes} \times \text{seconds}]$

- **Time per iteration [seconds]**
 - 0.0 to 1.4 on a logarithmic scale.
 - Y-axis: $[\text{DOFs} \times \text{CG iterations}] / [\text{compute nodes} \times \text{seconds}]$

- **Legend**
 - $p=1$ to $p=8$ represented by different markers.

Note:
- 1 node × 56 ranks, /cpu/self/xsmm/blocked, PETSc BP3
- 10^9 points per compute node
BP1: Skylake AVX

1 node × 56 ranks, /cpu/self/avx/serial, PETSc BP1

1 node × 56 ranks, /cpu/self/avx/blocked, PETSc BP1
BP1: Skylake libXSMM

1 node × 56 ranks, /cpu/self/xsmm/serial, PETSc BP1

1 node × 56 ranks, /cpu/self/xsmm/blocked, PETSc BP1
BP3: Skylake libXSMM

[Graphs showing computational efficiency with different problem sizes and numbers of ranks.]

1 node × 56 ranks, /cpu/self/xsmm/serial, PETSc BP3

1 node × 56 ranks, /cpu/self/xsmm/blocked, PETSc BP3
GPU support

In-place with CPU (host) memory

```c
PetscScalar *y;
VecGetArray(Ypetsc, &y);
CeedVectorSetArray(Yceed, CEED_MEM_HOST, CEED_USE_POINTER, y);
CeedOperatorApply(op, Xceed, Yceed, CEED_REQUEST_IMMEDIATE);
```

In-place with GPU (device) memory

```c
PetscScalar *y;
VecCUDAGetArray(Ypetsc, &y);
CeedVectorSetArray(Yceed, CEED_MEM_DEVICE, CEED_USE_POINTER, y);
CeedOperatorApply(op, Xceed, Yceed, CEED_REQUEST_IMMEDIATE);
```

- All PETSc Krylov methods run entirely on the device
- Preconditioning options limited compared to CPU
- (New) intra-node communication optimization and smarter packing (Junchao Zhang)
Operator composition

tests/t520-operator.c

```c
CeedCompositeOperatorCreate(ceed, &op_mass);
CeedCompositeOperatorAddSub(op_mass, op_massTet);
CeedCompositeOperatorAddSub(op_mass, op_massHex);

CeedOperatorApply(op_mass, U, V, CEED_REQUEST_IMMEDIATE);
```

- Backend can group within like topologies; flatten iteration space
CEED_QFUNCTION int Diff(void *ctx, const CeedInt Q,
 const CeedScalar *const *in,
 CeedScalar *const *out) {
 const CeedScalar *ug = in[0], *qd = in[1];
 CeedScalar *vg = out[0];
 for (CeedInt i=0; i<Q; ++i) {
 const CeedScalar ug0 = ug[i+Q*0];
 const CeedScalar ug1 = ug[i+Q*1];
 const CeedScalar ug2 = ug[i+Q*2];
 vg[i+Q*0] = qd[i+Q*0]*ug0 + qd[i+Q*1]*ug1 + qd[i+Q*2]*ug2;
 vg[i+Q*1] = qd[i+Q*1]*ug0 + qd[i+Q*3]*ug1 + qd[i+Q*4]*ug2;
 vg[i+Q*2] = qd[i+Q*2]*ug0 + qd[i+Q*4]*ug1 + qd[i+Q*5]*ug2;
 }
 return 0;
}
libCEED apps beyond ECP: PyLith

- Quasi-static and dynamic rupture simulations
- Rate and state fault models; extensible using Python, large user community
- Relatively low order currently; numerical dispersion for rupture
- Joe Geisz: CU summer undergrad integrating libCEED into PyLith
libCEED apps beyond ECP: PHASTA

- DDES for flow control, cardiovascular flow (SimVascular)
- Leila Ghaffari: CU starting PhD student; Valeria, Oana, Ken Jansen
Adaptive BDDC: robust coarsening/smoothing

- weak continuity between subdomains
- orthogonality between “smoother” and coarse corrections
- adaptive coarse spaces; sharp convergence guarantees
- $\kappa \sim \left(1 + \log p^2\right)^2$ versus p^2 (ASM)

[Mandel and Sousedík (2010)]
libCEED Outlook

- Parallel examples: MFEM, Nek5000, PETSc
- Ongoing optimization: CPU, CUDA (Tier 1); OCCA, MAGMA, OpenMP/OpenACC
 - Automatic choice of strategy
- Faster/more automatic mixed topology and mixed order meshes
- Gallery of Q-functions in development
- Algorithmic differentiation for Q-functions
- Preconditioning
 - FDM as smoothers, interface to PETSc (Jeremy, Oana)
 - Smoothers for non-separable operators
 - Adaptive BDDC using libCEED (with Stefano Zampini, KAUST)
- FMS and visualization