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ACME 2014 (now E3SM)
5.3 Computational Performance Improvement

During the first six months of the project, the performance engineering effort will assess ACME v0
application performance and identify the target metrics for each component in terms of its throughput and
scaling behavior in the coupled system. Then improvements in on-node (using OpenMP or OpenACC to
expose more parallelism and leverage features of the different LCF architectures) and between-node (with
communication-hiding implemented over MPI) can be focused on improving the coupled model throughput.
Our performance strategy for the v1 model was chosen to increase performance on the existing LCFs and
position us to exploit new codesign-inspired approaches in the v2 model. We will focus on two key tasks:
exposing increased concurrency throughout the model and increasing the on-core performance of key
computational kernels. In v1, we will be using conventional approaches, such as threading and MPI for the
first task and increased use of accelerators for the second task. Increas
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MODELING FOR ENERGY

This includes the ACME target of five simulated years per wall-clock day (SYPD), and the required
performance by each component that is needed to achieve that target. Because /O performance is simulation-
dependent (based on science objectives), it will be dealt with in a separate task that focuses on the most
critical issues.

architecture. The throughput-based priority performance metric is: on Iy one ObJ eCTIVe |

o (Perfl) Maximum simulated years per wall-clock day of the coupled system running without I/O.

This includes the ACME target of five simulated years per wall-clock dayI(SYPD), and the required
performance by each component that is needed to achieve that target. Because I/O performance is simulation-




“No DOE facility through 2020 will run ACME faster than Edison” — 2013

Atmosphere Performance
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Latency versus Throughput
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Fuhrer at al, 2018
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Fuhrer at al, 2018: Work-Time spectrum
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Fuhrer at al, 2018: Work-Time spectrum

rate of work per node
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MPI_Allreduce performance, c/o Paul Fischer
Eliminating log P term in CG

all_reduce time (seconds)

On BGIL, /P, /Q, all_reduce is nearly P-independent.
For P=524288, all_reduce(1) is only 4 !

software all_reduce
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Latency hasn’t improved much in 15 years

Year Latency (us) 1/Bandwidth (us/word) Machine

1986 5960 64 Intel iPSC-1 (286)
1988 938 2.8 Intel iPSC-2/ (386)
1990 80 2.8 Intel iPSC-i860
1991 60 0.8 Intel Delta

1992 50 0.15 Intel Paragon
1995 60 0.27 IBM SP2 (BU96)
1996 30 0.02 ASCI Red 333
1999 20 0.04 Cray T3E/450
2005 4 0.026 BGL/ANL

2008 3.5 0.022 BGP/ANL

2011 2.5 0.002 Cray XE6 (KTH)
2012 3.8 0.0045 BGQ/ANL

2015 2.2 0.0015 Cray XK7

Measured machine-dependent parameters from Fischer, Heisey, Min (2015)



Fuhrer at al, 2018: Work-Time spectrum
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What won’t save us?

Data volume Work

Time = Lat
Ime = Latency + = i Compute rate

P s-step methods (high overhead in strong scaling regime)
> Adaptivity (doesn’t reduce latency)

» Reduced precision (doesn’t reduce latency)
» Parallel-in-time integrators

» Poor efficiency
» Lack of stable coarse integrator
» Slow convergence with positive Lyapunov exponent



Algorithmic themes

» Do more work each time you pay for latency

» Communicate
» GPU kernel launch
> i#pragma omp barrier, etc.

> Combine operations via implicitness
» Only possible with very fast iterative convergence!

» Control time-splitting errors



Runge-Kutta methods

u=F(u)
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» General framework for one-step methods

» Diagonally implicit: A lower triangular, stage order 1 (or 2 with explicit first stage)
» Singly diagonally implicit: all A; equal, reuse solver setup, stage order 1

> If Ais a general full matrix, all stages are coupled, “implicit RK”



Method of Butcher (1976) and Bickart (1977)

» Newton linearize Runge-Kutta system at u*
Y = u"+ hAF(Y) [ls® I+ hA® J(u*)]8Y = RHS
» Solve linear system with tensor product operator
G=8S®h+IsaJ

where S = (hA)~"is s x sdense, J = —dF(u)/du sparse
» SDC (2000) is Gauss-Seidel with low-order corrector

» Butcher/Bickart method: diagonalize S = VAV~

> AQIh+1s®J
» s decoupled solves
» Complex eigenvalues (overhead for real problem)



Eigenbasis ill conditioning A= VAV ™!

K(V)

Conditioning of eigenbasis: gauss
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Why implicit is silly for waves

v

Implicit methods require an implicit solve in each stage.

» Time step size proportional to CFL for accuracy reasons.
» Methods higher than first order are not unconditionally strong stability preserving
(SSP; Spijker 1983).
» Empirically, cett < 2, Ketcheson, Macdonald, Gottlieb (2008) and others
» Downwind methods offer to bypass, but so far not practical
» Time step size chosen for stability

» Increase order if more accuracy needed
» Large errors from spatial discretization, modest accuracy

» My goal: need less data motion per stage

» Better accuracy, symplecticity nice bonus only
» Cannot sell method without efficiency



Implicit Runge-Kutta for advection

Table: Total number of iterations (communications or accesses of J) to solve linear advection to
t =1 on a 1024-point grid using point-block Jacobi preconditioning of implicit Runge-Kutta matrix.
The relative algebraic solver tolerance is 1078,

Method order nsteps Krylovits. (Average)
Gauss 1 2 1024 3627 (3.5)
Gauss 2 4 512 2560 (5)
Gauss 4 8 256 1735 (6.8)
Gauss 8 16 128 1442 (11.2)

> Naive centered-difference discretization
» Leapfrog requires 1024 iterations at CFL=1
» This is A-stable (can handle dissipation)



Diagonalization revisited

(Io1—hAR L)Y = (1@ )u,
Uni1=Un+h(b"®L)Y

» eigendecomposition A= VAV~

(Vo N(I&l-hAL) (V'Y =1 u,.

» Find diagonal W such that W—'1 = vV—'1
» Commute diagonal matrices

(I 1—hARL) (W'Y = (1)U,
V4

» Using b = b” VW™, we have the completion formula

Unp1 = Up+h(b"®L)Z.
» A, bis new diagonal Butcher table



REXI: Rational approximation of exponential

u(t) = e"u(0)

» Haut, Babb, Martinsson, Wingate; Schreiber and Loft

(c@1+hlxL)Y =(1®/)u,
U1 = (BT @Y.

» o is complex-valued diagonal, 8 is complex
» Constructs rational approximations of Gaussian basis functions, target (real part of) e

» REXI is a Runge-Kutta method: can convert via “modified Shu-Osher form”

» Developed for SSP (strong stability preserving) methods
» Ferracina, Spijker (2005), Higueras (2005)
> Yields diagonal Butcher table A= —a~ ', b= —a 2



Abscissa for RK and REX| methods
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KiD: accuracy of time integrator
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Slows convergence of global model
(a) With CAM5 physics
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(b) Sensitivity exp.
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Calibration (c/o Caldwell)

Impact of time step on autoconversion

vs accretion partitioning (from Hui)
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» Parameters calibrated for systematic discretization error
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Parameter tuning

With four parameters | can fit an elephant, and with five | can make him wiggle his
trunk.
— John von Neumann

» Over-fitting is a pathology

» Good subgrid models do not require (much) re-tuning parameters when At or Ax
change

» Experimenting with new discretizations requires expensive, ad-hoc parameter
re-calibration.



Are we solving the right problem?

» CESM Large Ensmeble Project (Kay et al., 2015)

» 30-member ensemble

» Identical initial conditions except for 10~'*K perturbation in initial temperature
» CESM(CAMS) at ~ 1° resolution



Cliff Mass projected warming in the PNW
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Cliff Mass projected warming in the PNW
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Cliff Mass projected warming in the PNW
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Outlook

Latency is a killer for high resolution. Needs to be confronted directly.
Fascinating applied math/CS questions

High inertia to address, especially when recalibration needed

Need explicit support for career paths in methods development
Thanks to DOE ASCR, BER, and ECP
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