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LANDAU COLLISION INTEGRAL SOLVER WITH ADAPTIVE
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Abstract. The Landau collision integral is an accurate model for the small-angle dominated
Coulomb collisions in fusion plasmas. We investigate a high order accurate, fully conservative, finite
element discretization of the nonlinear multispecies Landau integral with adaptive mesh refinement
using the PETSc library (www.mcs.anl.gov/petsc). We develop algorithms and techniques to effi-
ciently utilize emerging architectures with an approach that minimizes memory usage and movement
and is suitable for vector processing. The Landau collision integral is vectorized with Intel AVX-512
intrinsics and the solver sustains as much as 22% of the theoretical peak flop rate of the Second
Generation Intel Xeon Phi (“Knights Landing”) processor.
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1. Introduction. The simulation of magnetized plasmas is of commercial and
scientific interest and is integral to the fusion energy research program of the U.S.
Department of Energy (DOE) [1, 2, 3]. Although fluid models are widely employed
to model fusion plasmas, the weak collisionality and highly non-Maxwellian velocity
distributions in such plasmas motivate the use of kinetic models, such as the so-
called Vlasov–Maxwell–Landau system. The evolution of the phase-space density
or distribution function f of each species (electrons and multiple species of ions in
general) is modeled with

df

dt
≡ ∂f

∂t
+
∂x

∂t
· ∇xf +

∂v

∂t
· ∇vf =

∂f

∂t
+ v · ∇xf +

e

m
(E + v ×B) · ∇vf = C,

where e is charge, m mass, E electric field, B magnetic field, x spatial coordinate,
v velocity coordinate, and t time. The Vlasov operator d/dt describes the streaming
of particles influenced by electromagnetic forces, the Maxwell’s equations provide the
electromagnetic fields, and the Landau collision integral [4], C, produces entropy and
embodies the transition from many-body dynamics to single particle statistics. As
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such, the Vlasov–Maxwell–Landau system of equations is the gold standard for high-
fidelity fusion plasma simulations.

The Vlasov–Maxwell–Landau system also conserves energy and momentum, and
guaranteeing these properties in numerical simulations is of paramount importance to
avoid plasma self heating and false momentum transfer during long-time simulations.
Hirvijoki and Adams recently developed a finite element discretization of the Landau
integral, which is able to preserve the conservation properties of the Landau collision
integral with sufficient order accurate finite element spaces [5]. We now continue
this work with the development of a multispecies Landau solver with adaptive mesh
refinement (AMR), which is designed for emerging architectures and implemented on
the Second Generation Intel Xeon Phi, (“Knights Landing”, or KNL) processor.

Due to the nonlinearity of the Landau collision integral, it has an intensive work
complexity of O(N2) with N global integration or quadrature points. Given this high-
order work complexity, reducing the total number of quadrature points decreases
computational cost substantially. We use high-order accurate finite elements and
AMR to maximize the information content of each quadrature point and thus minimize
the solver cost. We adapt nonconforming tensor product meshes using the p4est
library [6, 7, 8], as a third party library in the PETSc library [9, 10].

We develop algorithms and techniques for optimizing the Landau solver on emerg-
ing architectures, with emphasis on KNL, and verify the order of accuracy on a model
problem. We vectorize the kernel using Intel AVX-512 intrinsics and achieve a flop rate
as high as 22% of the theoretical peak floating point rate of KNL. This is an impor-
tant step towards facilitating near-future gold-standard full Vlasov–Maxwell–Landau
simulations where multiple Landau solvers must be run in parallel, each solver ad-
dressing one of the spatial-configuration mesh nodes on which the fields E and B are
evolved.

2. Conservative finite element discretization of the Landau integral.
We consider the multispecies version of the conservative finite element discretization
of the Landau collision integral presented by Hirvijoki and Adams [5]. Under small-
angle dominated Coulomb collision, the distribution function fα(v, t) of species α
evolves according to
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0), ln Λ is the Coulomb logarithm, mo is an arbitrary

reference mass, ε0 is the vacuum permittivity, m is mass, e is electric charge, and v
is the velocity. Overbar terms are evaluated on the v̄ grid that covers the domain Ω̄
of species β. The Landau tensor U(v, v̄) is a scaled projection matrix defined as

(2) U(v, v̄) =
1

|v − v̄|3
(
|v − v̄|2I− (v − v̄)(v − v̄)

)
and has an eigenvector v − v̄ corresponding to a zero eigenvalue.

Given a test function ψ(v), the weak form of the Landau operator (1) for species
α is given by

(3)
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(ψ, fα)K,αβ + (ψ, fα)D,αβ
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where (·, ·)Ω is the standard L2 inner product in Ω and the weighted inner products
present the advective and diffusive parts of the Landau collision integral

(ψ, φ)K,αβ =
∫

Ω
dv∇vψ · ν̂αβ

mo

mα

mo

mβ
K(fβ ,v)φ,(4)

(ψ, φ)D,αβ = −
∫

Ω
dv∇vψ · ν̂αβ

mo

mα

mo

mα
D(fβ ,v) · ∇vφ.(5)

The collision frequency is normalized with ν̂αβ = ναβ/νo so that time t is dimension-
less, and fβ is the distribution function of species β. The vector K and the tensor D
are defined as

K(f,v) =
∫

Ω̄
dv̄ U(v, v̄) · ∇̄v̄f(v̄),(6)

D(f,v) =
∫

Ω̄
dv̄ U(v, v̄)f(v̄).(7)

Assuming a finite-dimensional vector space Vh that is spanned by the set of functions
{ψi}i, the finite-dimensional approximation of the weak form (3) can be written in a
matrix form

(8) Mḟα = Cα[f ]fα,

where fα is the vector containing the projection coefficients of fα onto Vh and the
vector f is the collection of all species fα, The mass and collision matrices are defined

(9) Mij = (ψi, ψj)Ω, Cα,ij [f ] =
S∑
β=1

(ψi, ψj)K,αβ + (ψi, ψj)D,αβ .

The integrals in (6), (7), with the Landau tensors in the kernel, have O(N) work for
each species β and each equation in (3). With O(N) equation this leads to an O(N2)
algorithm for computing a Jacobian or residual when solving (8) for each species.

We would like to note that while the direct discretization of the Landau integral
has a complexity of O(N2), the collision operator can be formulated as a coupled
set of pure partial differential equations with a complexity of O(N) [11, 12]. The
pure PDE formulations, however, have to introduce artificial numerical fudge-factors
if strict conservation properties are desired while in the direct Landau approach the
properties are guaranteed by construction [5].

3. Algorithm design for emerging architectures. This section discusses
the algorithms and techniques used to effectively utilize emerging architectures for
a Landau integral solver. While the Landau operator has O(N2) work complexity,
this work is amenable to vector processing. We focus on KNL, but the algorithm is
designed to minimize data movement and simplify access patterns, which is beneficial
for any emerging architecture.

The discrete Landau Jacobian matrix construction, or residual calculation, can be
written as six nested loops. Algorithm 1 shows high level pseudocode for construction
the Landau Jacobian matrix, with |G| cells in the set G, Nq quadrature points in each
element, distribution functions f , S species, and weights wqj = |J (qj) | · qj .weight ·
qj .r, where qj .r is the axisymmetric term of the element Jacobian, qj .weight is the
quadrature weight of qj , and J (qj) is the element Jacobian at point qj .
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Algorithm 1. Simple algorithm to compute Landau Jacobian C with state f .
for all cells i ∈ G do

for all quadrature points qi ∈ i do
for α = 1 : S do

for all cells j ∈ G do
for all quadrature points qj ∈ j do

for β = 1 : S do
U← LandauTensor (qi.r, qi.z, qj .r, qj .z)
K← ν̂αβ

mo
mα

mo
mβ

U · ∇fβ (qj)wqj
D← −ν̂αβ momα

mo
mα

Ufβ (qj)wqj
C← FiniteElementAssemble (C, wqi ,K,D)

end for
end for

end for
end for

end for
end for

The Landau tensor U in (6), (7) is computed, or read from memory, in the inner
loop. A vector K = U · ∇fqjwqj and a tensor D = Ufqjwqj are accumulated in
the inner loop. With S species, the accumulation of K and D requires 6S words.
These accumulated values are transformed in a standard finite element process from
the reference to the real element geometry and assembled with finite element shape
functions into the element matrix. The six loops of Algorithm 1 can be processed
in any order, and blocked, giving different data access patterns, which is critical in
optimizing performance.

The first two issues that we address in the design of the Landau solver are (1)
whether to precompute the Landau tensors or compute them as needed and (2)
whether to use a single mesh with multiple degrees of freedom per vertex or use
a separate mesh for each species.

3.1. To precompute the Landau tensor or not to precompute. The Lan-
dau tensor is only a function of mesh geometry and can be computed and stored for
each mesh configuration. The cost of computing the Landau tensor is amortized by
the number of nonlinear solver iterations and the number of time steps that the mesh
is used, and can be ignored if it is precomputed and stored. In the axisymmetric
case there are two Landau tensors and they require approximately 165 floating point
operations (flops) as measured by both the Intel Software Development Emulator
(SDE) and code analysis, including four logarithms and square roots (see Appendix
[5]). Storing these two tensors requires eight words of storage, or 64 bytes with double
precision words. There are O(N2) unique mesh (i, j) pairs for which the tensors are
computed or stored. The decision to precompute or compute as needed depends on
several factors.

A simple analysis on KNL, for instance, suggests that both approaches are viable.
Assuming the equivalent of 200 ordinary flops per axisymmetric Landau tensor pair
calculation and 64 bytes of data, the flop to byte ratio is about three. The 68 core Intel
Xeon Phi 7250 version of the KNL processor has a theoretical peak floating point ca-
pacity of about 2.6×1012 flops/second and around 400×109 bytes/second on-package
memory bandwidth capacity, as measured by STREAMS, or a flop to byte ratio of
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about six. This simple analysis, assuming peak STREAMs, ignoring caches and as-
suming peak flop rates, suggests that the precomputing approach would be two times
slower. We achieve about 20% of theoretical peak flop rate and, thus, a precomputed
implementation would need to achieve about 40% of STREAMS bandwidth to match
the run time of each kernel evaluation, which is feasible. Additionally, the stored
approach could process blocks of (i, j) pairs to utilize the cache and thus increase the
available memory bandwidth. This simple analysis suggests that either approach is
viable on KNL, but the trends in hardware are increasing the gap between flop and
memory movement capacity, in the form of more vector lanes and more hardware
resources per lane, which benefits the compute as needed approach.

An optimized stored tensor implementation would allow for experimental com-
parison of these two approaches, which would be interesting and provide a potentially
useful option, but this is the subject of future work. See Hager et al., for discussion
of a stored tensor approach [13].

3.2. Single and multiple meshes. We use a single mesh, adapted for all S
species, with S degrees of freedom per vertex. One can, however, use multiple meshes
or a mesh for each species. Observe that the integrals in (6), (7) are decoupled
from the outer integral in (4), (5). In theory, one can use a separate grid, or different
quadrature, or even a different discretization for each species. An advantage of using a
single mesh is that the two loops over species in (9) can be processed after the Landau
tensors are computed, and hence these tensors can be reused S2 times. However, if
all of the species have “orthogonal” optimal meshes, that is each quadrature point
only has significant information for one species, which is a good assumption for ions
and electrons because of their disparate velocities, then a single mesh requires about
as many vertices as the sum of each of the putative multiple meshes. Thus, with this
simple model, the size of the single mesh is S times larger than each single mesh and
is S2 more expensive because the algorithm has O(N2) complexity. This S2 increase
in cost cancels the saving from hoisting the tensor computation out of the inner
species loops. With this model of orthogonal optimal meshes and kernel dominated
computation or communication, and with Nα quadrature points for each species α,
the complexity of a Landau solve is O

(∑S
α=1Nα

)2 for both the single and multiple
mesh approach.

The “orthogonal” mesh assumption is less valid with respect to multiple ion
species, because ions have similar velocities and hence the optimal meshes for each
species are similar. The Jacobian matrix for the single mesh approach has about S
times more nonzeros and the same fill pattern and so the solver cost is linear in S with
both approaches. The single mesh method has larger accumulation register demands
and larger element matrices, which places more pressure on the memory system. The
result of the increased register pressure can be seen in the decreased flop rates in Table
2 with the increase in the number of species. Single and multiple mesh approaches
are both viable; we have chosen a single mesh but the method is valid for multiple
meshes and we may pursue this option as future work. Additionally, others have used
multiple meshes successfully for Landau integrals [11, 13].

3.3. Our algorithm. For demonstration purposes, we focus on implementing
the axially symmetric version using cylindrical velocity coordinates x = (r, θ, z). Un-
der axial symmetry the distribution function is independent of the angular velocity
coordinate (∂θf = 0) and the evaluation of the vector K and the tensor D requires
two different Landau tensors UK and UD, respectively (see Appendix in [5]). We
choose to compute the required Landau tensors as needed and use a single mesh with
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a degree-of-freedom for each species on each vertex. We fuse the two inner loops over
cells and quadrature points, inline the function call of the Landau tensor function.
Algorithm 2 shows the initialization of the vectors r, z, w, f , and the two gradient
vectors df [1] and df [2], with |G| cells in the set G, S species, and weights wqi at
each quadrature point i. Each quadrature point qi is located at a 2D coordinate (qi.r,
qi.z).

Algorithm 2. Initialization of vectors r, z, w, f , and df with state f .
1: for all cells i ∈ G do
2: for all quadrature points qi ∈ i do
3: r.append(qi.r)
4: z.append(qi.z)
5: w.append(wqi)
6: for α = 1 : S do
7: f [α].append(fα(qi))
8: df [1][α].append(∇fα(qi)[1])
9: df [2][α].append(∇fα(qi)[2])

10: end for
11: end for
12: end for

Algorithm 3 shows the algorithm for the construction of the Landau collision inte-
gral Jacobian. This algorithm is designed to minimized data movement by computing
the Landau tensors as needed and exploits a single mesh by hoisting the tensor kernel
outside of the two inner loops over species.

4. Numerical methods and implementation. We implement the Landau
solver with the PETSc numerical library [9, 10]. PETSc provides finite element (FE)
and finite volume discretization support, mesh management, interfaces to several third
party mesh generators, fast multigrid solvers, interfaces to third party direct solvers,
and AMR capabilities, among other numerical methods. We adapt nonconforming
tensor product meshes using the third party p4est library [6, 7, 8], and unstructured
conforming simplex meshes with PETSc’s native AMR capabilities [14]. Our exper-
iments use biquadratic (Q2) elements with p4est adaptivity, with the PETSc’s Plex
mesh management framework.

The velocity is normalized according to v = xL where x is dimensionless and
L is chosen freely and can present, e.g., a multiple of thermal velocity. For us, the
computational domain is chosen to be Ω = {(r, z) | 0 ≤ r ≤ L,−L ≤ z ≤ L}. We use
Neumann boundary conditions and shifted Maxwellian initial distribution functions,
for each species, of the form

fα(x, t = 0) =
1
2
(
πσ2

α

)−3/2
exp

(
−r

2 + (z − sα)2

σ2
α

)
,

where σ2
α = 2Tα/(mαL

2), si = 0, se = −1, Tα is temperature.
We solve the boundary value problem

∂fα
∂t

(v, t)−Cα[f ]f = 0

in axisymmetric coordinates, with standard FE methods and time integrators. A
Newton nonlinear solver with the SuperLU direct linear solver is used at each time
stage or step [15]. These experiments use a Crank–Nicolson time integrator.
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Algorithm 3. Algorithm to compute C with r, z, w, f , and df from Algorithm 2.
1: for all cells i ∈ G do
2: ElemMat← 0
3: for all quadrature points qi ∈ i do
4: K← 0
5: D← 0
6: wi ← qi.weight · |J (qi)| · qi.r
7: N ← Nq · |G|
8: for n = 1 : N do // Vectorized loop
9: [UK,UD]← LandauTensor (qi.r, qi.z, r[n], z[n])

10: for α = 1 : S do
11: for β = 1 : S do
12: K [α]← K [α] + ν̂αβ

mo
mα

mo
mβ

UK · df [:][β][n]w[n]
13: D [α]← D [α]− ν̂αβ momα

mo
mα

UDf [β][n]w[n]
14: end for
15: end for
16: end for
17: for α = 1 : S do
18: G2 [α]← J (qi)

−1 K [α]wi // transform point integral to global space
19: G3 [α]← J (qi)

−1 D [α] J (qi)
−1
wi

20: end for
21: // Project point value to vertices of cell i
22: ElemMat← Transform&Assemble (ElemMat,G2,G3,B (qi))
23: end for
24: // Sum element matrix into global Jacobian
25: C← GlobalAssemble (C, i,ElemMat)
26: end for

A global kinetic model would include a 3D spatial component and the 3V version
of this solver would be used at each cell in either a particle method [13], or a grid
based kinetic method [16]. Our numerical experiments use up to 272 Message Passing
Interface (MPI) processes on one KNL socket, redundantly solving the problem, to
include memory contention that one would see in a 5D method. The timing exper-
iments run one time step with one Newton iteration, which results in the Landau
operator being called twice (one more than the number of Newton iterations), and
with one linear solve (one per Newton iteration). The time for this step is reported,
which does not include the AMR mesh construction (see section 4.6 for a discussion
of AMR). We observe a variability in times with 272 processes: we have run each
test several times in several sessions, in both batch and interactive modes, and we
report the fastest observed time. This reported time is the maximum time for all
processes; we see about a 10% ratio between the maximum and the minimum time of
any process with large process counts.

4.1. Overview of test problem. To illustrate the capabilities and behav-
ior of the solver, we run the code to near equilibrium, initializing electrons with a
shifted Maxwellian distribution hitting a stationary single proton ion population with
a Maxwellian distribution. Figure 1 (left) shows the initial electron distribution with
the ion grid at the origin, a partially thermalized electron distribution (center, left),
and Maxwellian ion distribution near equilibrium (center, right). The ion distribution
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has been shifted from the origin by collision with the electrons. The ions are resolved
with AMR at the origin and have a near Maxwellian distribution. Note, the visual-
ization in Figure 1 uses linear interpolation from the three corners of two triangles
created for each quadrilateral, whereas the numerics use biquadratic interpolation
with nine vertices per quadrilateral, which results in distored visualization.

Fig. 1. Charge density with initial Maxwellian distribution functions relaxing towards equilib-
rium, initial electron distribution (left), partially thermalized electrons (center, left), detail of the
ion distribution (center, right), electron only adapted mesh (right).

4.2. Optimization and performance. Most of the work in the Landau solver
is in the inner integral of (4,5) (lines 8–16 in Algorithm 3). This kernel is vectorized
with Intel AVX-512 intrinsics. The Landau tensors calculation includes two loga-
rithms, a square root, a power, seven divides, about 85 multiplies and 165 total flops.
The power is converted to an inverse square root, an intermediate divide is reused, re-
sulting in five divides, two logarithms, a square root, and an inverse square root. The
KNL sockets used for this study are equipped with 34 tiles, each with a 1 megabyte
shared L2 cache and two cores; each core has two vector processor units (VPUs) with
8 double-precision SIMD lanes and can issue one fused multiply add (FMA) per cycle
per VPU. Each core has four hardware threads, for a total of 272 threads per socket.
The nominal KNL clock rate is 1.4 GHz, but is clocked down to 1.2 GHz in sustained
AVX-512 code segments. This results in a theoretical flop peak rate of 2.6 × 1012

flops/second. The peak flop rate that can be achieved with this solver is reduced
because the kernel is not entirely composed of FMAs and the four logarithms and
square roots require considerably more than one cycle each.

We note that our early implementations of this kernel did not make use of AVX-
512 intrinsics; instead, we relied on the Intel compiler to transform loops into vec-
torized code. Guided by the compiler optimization reports, we made several code
modifications and appropriate use of pragmas, after which the compiler was able to
generate vectorized executables that achieved over 90% of the performance of the
AVX-512 intrinsics-based version of the code. We ultimately decided to use the AVX-
512 intrinsics approach because of the slightly better performance offered, and because
we found that relying on the compiler vectorizer requires code changes and mainte-
nance that may not be obvious.

4.3. Performance overview. The performance data in this section uses a sim-
plified version of the test problem: a grid with 176 cells and 1,584 quadrature points,
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a mass ratio of mi
me

= 1 and Te = Ti = 0.2 keV, and no Maxwellian shifts (si = se = 0)
as shown in Figure 1 (right). All experiments herein set ln Λαβ = 10 and L = 2.

The major code segments have been instrumented with PETSc timers. Table
1 shows the maximum time from any process for major components of the Landau
operator, the total Landau operator, and the linear solver. This data shows that the
Landau kernel, though vectorized, is still responsible for most of the run time.

Table 1
Major component times (maximum of any process) from one time step with two species, double

precision, and 272 processes.

Component (times called) Time (maximum) % of total
Landau initial vector data setup, Algorithm 2 0.019 2
Landau kernel with AVX512 intrinsics 0.533 66
Landau FE transforms & assemble 0.030 4
Landau FE global matrix assembly 0.072 9
Landau operator total (2) 0.682 85
Linear solver (1) 0.12 15
Total time step time (1) 0.803 100

4.4. Performance and complexity analysis. There are two types of work
in the kernel: (1) computing the two Landau tensors and (2) the accumulation of
the K vector and D tensor. The accumulation requires 20S2 flops (lines 12–13 in
Algorithm 3). Instrumenting this inner loop would be invasive, but we can infer the
percentage of time and work in these two parts with a complexity model and global
measurements. Assume both the time and work cost of the entire solver are of the
form C = aS0 + bS1 + cS2. The solve times and flop counts with S = 1, 2, 3, shown in
Table 2, generate right-hand sides for a system of three equations and three unknowns
a, b, and c, which are the time spent, or work, in each of the three types of components.
The Landau tensor cost is formally independent of the number of species, and the
work in the accumulation has S2 work complexity. Most of the rest of the costs, given
a mesh, order of elements, etc., has O(S1) complexity. Table 3 shows the percentage
of time and work in each component, inferred from the one process data in Table 2.
This analysis with the 272 process data results in invalid percentages, presumably due
to performance variations between cores. This analysis shows that, in the case of one
process and two species, about 97% of the work, and about 82% of the time, is in the
kernel. The measurements of the kernel time in Table 1 is 66% with 272 processes.
This discrepancy is probably due to performance noise and memory contention in
the 272 process timings, as well as inaccuracy of this model. The nonkernel time
percentage (18) increases by a factor of about eight from the flop percentage (2.2) for
the two species case and is similar for one and three species cases. This factor of eight
is expected because the KNL vector unit has eight vector lanes.

Table 2
Time (seconds) with 1 and 272 processes on one KNL socket; flop counts from Intel SDE, and

flop rates.

# Species 1 proc. 272 proc. Gflops 1 proc. Gflops/sec. (% of peak)
1 0.21 0.47 1.01 572 (22)
2 0.28 0.79 1.34 455 (18)
3 0.38 1.38 1.88 370 (14)
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Table 3
Percentage of flops (F) and time (T) in species independent work, work linear in S, and work

quadratic in S, with double precision and one process.

Work type (# of species) F (1) T (1) F (2) T (2) F (3) T (3)
S0 (Landau tensors) 88 81 66 61 47 45
S1 (nonkernel work) 1.5 12 2.2 18 2.4 20
S2 (accumulation) 10.5 7 31 21 50 36

4.5. Memory performance. We perform a kind of weak speedup study, where
the same serial problem is replicated in each process as we scale up to the full 272
hardware threads on one KNL socket. Unlike a typical weak speedup study we do
not suffer from interprocess communication, but we do see increased run time from
memory contention as we increase the number of processes per tile. Given that the
number of flops per process is constant, this increase in run time translates to a
decrease in flop rate. Table 4 shows timing data with increasing number of processes
on a single KNL socket, with single and double precision. KNL’s architecture allows
for twice as many vector lanes with single (32 bit) versus double (64 bit) precision
and can run, in theory, twice as fast in single precision. This data shows that we are
achieving about 80% of the perfect factor of two speedup with single precision.

Table 4
Weak speedup time (seconds) with single and double precision.

Processes per socket 272 136 68 34 1
Processes per core (*with idle cores) 4 2 1 1* 1*
Processes per tile (*with idle tiles) 8 4 2 1 1*

Single 0.51 0.29 0.18 0.17 0.17
Double 0.80 0.46 0.30 0.28 0.28

Recall from section 4.2 that the KNL processors we use have 34 tiles, 68 cores (2
per tile), 272 hardware threads (4 per core), and 136 vector units (2 per core). One
might expect that using more processes than 136 processes would not be useful because
there are 136 vector units; however, the kernel has serial dependencies that result in
bubbles in the pipeline, especially in the ninth and tenth order polynomial evaluations
in the elliptic integrals. These holes can be filled by interleaving a second process in
another hardware thread. We do see about a 15% increase in total throughput from
the added parallelism of using all 272 hardware threads.

This data shows that the flop rate per process decreases by a factor of about
three in going from one process per tile to eight processes per tile (time increase by
a factor of three). There is no difference in per process flop rate between the one
process and 34 process runs, suggesting that the 34 processes are indeed placed with
one per tile and there is no contention at the level of main memory. There is little
degradation going from one to two processes per tile, suggesting that the problem still
fits in the L2 cache. The degradation from one to two processes per core suggests
there is contention in the L1 cache. The fact that the 272 process solve time does not
exactly double suggests that the two hardware threads per vector unit is allowing for
some instruction interleaving.

4.5.1. Precision and accuracy. We investigate the effects of single versus dou-
ble precision on the accuracy of the solver by considering the accuracy in the energy
with the test problem in section 4.7, with an 8x16 cell version of the problem. Floating
point error, with any given precision, will cause the norm of the nonlinear residual to
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stagnate at a relative reduction of a little less than the number of digits in the preci-
sion. We found that with single precision we could use a relative residual tolerance in
the nonlinear solver of rtol = 10−5 and for double precision we use rtol = 10−12 (for
the Q9 test we had to reduce this to rtol = 10−11). Table 5 shows the energy after
one time step of the test problem, with the digits highlighted that do not change in
subsequent order elements. This data indicates that we can get about twice as many
digits with double precision, as one would expect, and that we can effectively use up
to about Q8 elements for accuracy of the total energy with double precision.

Table 5
Single precision (SP) energy (left) and double precision (DP) energy (right), for Tensor element

polynomial order Qx, Boldface digits do not change is subsequent order test, *rtol = 10−11.

Tensor Element type (order) Energy (SP) Energy (DP)
Q2 5.7588756084442e-02 5.7588695494153e-02
Q3 5.7609990239143e-02 5.7610025387605e-02
Q4 5.7607710361481e-02 5.7607449991296e-02
Q5 5.7607315480709e-02 5.7607437129653e-02
Q6 5.7607439155331e-02
Q7 5.7607439138728e-02
Q8 5.7607439138879e-02
Q9* 5.7607439139733e-02

4.6. Dynamic mesh adaptivity. Our dynamic mesh adaptivity is a hierarchi-
cal quadtree-based method as implemented by the p4est library [17]. p4est imple-
ments a forest-of-quadtree data structure that maps quadtrees onto arbitrary base
meshes made of conforming quadrilateral, and partitions the leaves of the quadtrees
in parallel, although our numerical tests are serial, according to a space filling curve.
p4est provides data structures and algorithms for the typical refinement cycle used in
this work: refining and coarsening cells (while obeying a 2:1 condition between neigh-
boring cells) and efficiently constructing the adjacency information needed for finite
element methods from the bare list of quadtree leaves [7]. The library is designed to
be both efficient and highly scalable.

In our code, p4est is not directly referenced: rather, it is used as a backend to
the mesh interface in PETSc, as recently described in [18].

4.6.1. Mesh adaptivity numerical experiment of equilibrium test prob-
lem. We consider a problem of the form and domain shown in Figure 2, a shifted
Maxwellian electron population colliding with a stationary Maxwellian population
of ions and evolving to equilibrium. The ion refinement is not visible in Figure 2,
but it resembles that of Figure 1 (center, right). We use a realistic mass ratio of
mi
me

= 1836.5, and Te = 2 keV and Ti = 1 keV. Figure 2 shows the mesh adaptivity
of the initial state and the electron distribution. Note, this visualization uses linear
interpolation resulting in an image that is much rougher than the actual data, but
this provides a qualitative view of the test. The ion distribution at the origin is not
visible at this scale as in Figure 1 (right). All test problems use electrons (e) and ions
(i) with equal and opposite charge, ln Λαβ = 10, mo = me, and νo = ν00.

We use a time step of 10−9 for 900 time steps, at which point the energies, which
start with the ions having 44.8 times more energy than the electrons, to equilibrate
to within 13% of each other. This test was run on one Intel Xeon Processor E5-2698
v3 (“Haswell”) socket (2.3 GHz nominal frequency), with 64 hardware threads and
AVX2 support (that is, with 256 bit vector registers). We run 64 MPI processes all
running the same (serial) problem to mimic the memory contention of a spatial code
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Fig. 2. Detail of initial electron distribution of full analysis test, with mesh adaptivity.

where the Landau solver is run at each grid point. This problem ran in 413 seconds
and 2.8 of these seconds was spent in the adaptivity routines. Thus the time of the
processing adaptivity, which includes computing an error mesh at each cell after each
time step, is small.

Fig. 3. History of number of cells in equilibrium adaptivity study.

This problems starts with 95 cells (Figure 2) and after 900 time steps has coars-
ened to 80 cells. Because the electrons move to the origin with a slight shift to conserve
parallel momentum, the adaptivity around the initial electron cloud is completely
coarsened and what is essentially the ion mesh is all that remains at equilibrium.
Figure 3 shows the history of the number of cells.
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4.7. Verification of order of accuracy. We verify the expected order of accu-
racy with a convergence study using the third moment, thermal flux. We do not have
an analytical flux for this problem and use Richardson extrapolation to construct an
approximate exact flux. The mass ratio is 4, Te = 0.2 keV and Ti = 0.02 keV, and
Cartesian grids are used. The flux history, with a series of refined grids starting with
a 8 × 16 grid, is shown in Figure 4 (top, left). Figure 4 also shows the differences
between fluxes on successive grids, and the error convergence.

(a) Thermal flux (top), and flux differences (b) Error versus cell count

Fig. 4. (a) Therm flux over time (top, left), flux differences in grid sequence (bottom, left),
and quartic convergence rate (right).

We can see from this data that we achieve fourth order convergence.

5. Closure. We have implemented a high-order accurate finite element imple-
mentation of the Landau collision integral with adaptive mesh refinement in the
PETSc library using AVX-512 intrinsics for the Second Generation Intel Xeon Phi
(“Knights Landing”) processor. We have developed a memory-centric algorithm for
emerging architectures that is amenable to vector processing. We have achieved up to
22% of the theoretical peak flop rate of KNL and analyzed the performance character-
istics of the algorithm with respect to process memory contention, single and double
precision, and the results of vectorization. We have verified fourth order accuracy
with a biquadratic, Q2, finite element discretization. Future work includes building
models for runaway electrons in tokamak plasmas with this kernel [19, 20, 21, 22],
and building up complete kinetic models (6D AMR) that also preserve the geometric
structure of the governing equations of fusion plasmas [23]. The repository for this
work is publicly available [24].
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