
Chapter 9

Providing Mixed-Language and
Legacy Support in a Library:
Experiences of Developing PETSc

Satish Balay, Jed Brown, Matthew Knepley, Lois Curfman
McInnes, and Barry Smith

9.1 Introduction . 201
9.2 Fortran-C Interfacing Issues and Techniques . 202
9.3 Automatically Generated Fortran Capability . 213
9.4 Conclusion . 214

9.1 Introduction
This chapter explains how numerical libraries written in C can portably

support its use from both modern and legacy versions of Fortran efficiently.
This is done by examining, in a particular library, all the cross-language issues
in mixing C and Fortran. Despite the chagrin of many computer scientists,
scientists and engineers continue to use Fortran to develop new simulation
codes, and the Fortran language continues to evolve with new standards and
updated compilers. The need to combine Fortran and C code will also continue,
therefore, will be no less important in future computing systems that include
many-core processing with a hierarchy of memories and the integration of
GPU systems with CPU systems all the way up to exascale systems. Thus,
numerical analysts and other developers of mathematical software libraries
must ensure that such libraries are usable from Fortran. To make the situation
more complicated, depending on the age of the Fortran application (or the
age of its developers), the Fortran source code may be Fortran 77, Fortran 90,
Fortran 2003, or Fortran 2008 (possibly with TS 29113, required by MPI-3’s
“mpi_f08” module). In fact, the same Fortran application may include source
files with the suffix .f that utilize Fortran 77 syntax and formatting (traditional
fixed format), .F files that utilize some Fortran 90 or later language features
but still have fixed format, and .F90 that use free format. Many Fortran

201

202 Software Engineering for Science

application developers also resist utilizing the more advanced features of recent
Fortran standards for a variety of reasons. Thus, any interlanguage Fortran
library support must support both traditional Fortran dialects and modern
features such as derived types. See [325] for a short history of Fortran.

The Babel project [321] was an ambitious effort to develop a language-
independent object model that would allow scientific software libraries written
in several languages to be utilized from any of the languages, much as Corba
[326] was for business software. However, because of its extremely ambitious
nature, the tools (Java) selected to develop the model, and insufficent funding
for the large amount of development needed, the software could not fully serve
application and library needs.

The Portable Extensible Toolkit for Scientific computation (PETSc) is a
portable C software library for the scalable solution of linear, nonlinear, and
ODE/DAE systems, and computation of adjoints (sometimes called sensitiv-
ities) of ODE systems. PETSc has been developed and supported at ANL
for the past 20 years. PETSc has always supported a uniform Fortran inter-
face [319], even in the very early phases of library development (see page 29
of) [323], [324]. PETSc is written using a C-based object model (in fact, that
model inspired the Babel design) with a mapping of the objects and methods
(functions) on the objects to Fortran as well as Python. This paper discussses
only the Fortran mapping in PETSc.

9.2 Fortran-C Interfacing Issues and Techniques
Prior to the development of Fortran 2003, there was no standard within

Fortran for interfacing with C code. That is, how can one call Fortran sub-
routines from C and C functions from Fortran in portable code as efficiently
as possible. This means not needing to copy entire data structures between
the two languages. Fortunately, since all Fortran compilers followed the same
general set of protocols, one has always been able to portably mix Fortran
and C code. The interlanguage issues that must be dealt with include the
following.

Symbol names: Fortran compilers convert the symbol names to all capitals,
all lower case, or all lower case with an underscore suffix. One variant is that
symbols with an underscore get an additional underscore at the end of the
symbol. In PETSc we handle this name mangling using the preprocessor,
with code such as

#if defined(PETSC_HAVE_FORTRAN_CAPS)
#define matcreateseqaij_ MATCREATESEQAIJ
#elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)

Providing Mixed-Language and Legacy Support in a Library 203

#define matcreateseqaij_ matcreateseqaij
endif

A terser, arguably better way of managing this is to use the paste ## feature
of the C preprocessor. First we define the macro FC_FUNC() based on the
Fortran symbol format.

#if defined(PETSC_HAVE_FORTRAN_CAPS)
#define FC_FUNC(name,NAME) NAME ## _
#elif !defined(PETSC_HAVE_FORTRAN_UNDERSCORE)
#define FC_FUNC(name,NAME) name
#else
#define FC_FUNC(name,NAME) name ## _
#endif

Defining each symbol then takes only a single line, such as

#define matcreateseqaij_ FC_FUNC(matcreateseqaij,MATCREATESEQAIJ)

Character strings: Since Fortran strings are not null terminated, the For-
tran compiler must generate additional code to indicate the length of each
string. Most Fortran compilers include the string length (as an integer) as
an additional argument at the end of the calling sequence; some compilers
pass the length (as an integer) immediately after the character argument. In
PETSc we handle this issue in the definition of our C stub function, again
using the preprocessor #define, with code such as

void STDCALL vecsetoptionsprefix_(Vec *v,char* prefix
PETSC_MIXED_LEN(len),
PetscErrorCode *ierr
PETSC_END_LEN(len))

char *t;
FIXCHAR(prefix,len,t);
*ierr = VecSetOptionsPrefix(*v,t);
FREECHAR(prefix,t);

Here

#define FIXCHAR(a,n,b)
{

if (a == PETSC_NULL_CHARACTER_Fortran) {
b = a = 0;

} else {
while((n > 0) && (a[n-1] == ’ ’)) n--;
*ierr = PetscMalloc((n+1)*sizeof(char),&b);
if (*ierr) return;
*ierr = PetscStrncpy(b,a,n+1);

204 Software Engineering for Science

if (*ierr) return;
}

}

allocates a null terminated version of the string to pass to C and

#define FREECHAR(a,b) if (a != b) PetscFreeVoid(b);

frees the temporary string. Depending on where the Fortran compiler places
the len argument, either the PETSC_MIXED_LEN(len) or the PETSC_END_-
LEN(len) macro simply removes the argument.

Stack management: Microsoft (and compilers for Microsoft systems) sup-
ports various ways that function arguments are pushed on the stack and if
the caller or the callee removes the stack frame. Microsoft provides macros
(used in the function prototypes in C) to indicate the convention that each
function is using. Early Fortran compilers for Microsoft used the __stdcall
call convention, while C and C++ did not; hence, C prototypes for each For-
tran function required this annotation. Modern Intel Fortran compilers on
Microsoft systems do not use the __stdcall call convention, and hence this
annotation is needed only for older Fortran compilers on Microsoft systems.
In PETSc we handle this issue by decorating the C function definition with
STDCALL that becomes __stdcall only with older Fortran compilers for Mi-
crosoft systems.

Include files: Although the Fortran 77 standard did not provide for include
files, most Fortran compilers support include files that use the C preprocessor
(CPP) syntax; and for those systems that do not, one can always call the
C preprocessor on the Fortran source and then call the Fortran compiler on
the result. The use of include files with Fortran code makes possible many
of the techniques utilized by PETSc (and discussed below). Full C/Fortran
interoperability can be provided without requiring the use of Fortran include
files, instead, for example, utilizing Fortran modules to contain the needed
common data and values.

Enums: Since Fortran 77 provided no concept of the C enum, the established
practice was to use

#define PetscEnum integer

and then define each enum type with, for example,

#define InsertMode PetscEnum

The enumerated values are set by using the Fortran parameter statement, for
example,

Providing Mixed-Language and Legacy Support in a Library 205

PetscEnum INSERT_VALUES
parameter (INSERT_VALUES=1)
PetscEnum ADD_VALUES
parameter (ADD_VALUES=2)

although care must be taken that the same integer values are used in the C
and Fortran code. Recent versions of Fortran support enums via

ENUM InsertMode
ENUMERATOR :: INSERT_VALUE
ENUMERATOR :: ADD_VALUE

END ENUM
ENUM, BIND(C) :: InsertMode

which automatically ensures that the values assigned in Fortran match those
in the C enum.

Compile and runtime constants: As demonstrated above, the Fortran
parameter statement can be used to set compile-time constants that must
match between C and Fortran. But what about runtime constants? These are
traditionally handled by using common blocks whose entries are initialized
from the C values when the package is initialized. For example, here is how
PETSc handles the runtime value PETSC_COMM_WORLD. In a Fortran
include file we define

MPI_Comm PETSC_COMM_WORLD
common /petscfortran/ PETSC_COMM_WORLD

Then after PETSC_COMM_WORLD is defined in C within PetscInitialize(),
it calls the Fortran routine

subroutine PetscSetCommonBlock(c1)
implicit none

#include <petsc/finclude/petscsys.h>
integer c1
PETSC_COMM_WORLD = c1
return
end

to store the value in a Fortran common block. If one is willing to give up
portability to pure Fortran 77 codes, then these values can be stored in a
module rather than a common block. Initial communicating of Fortran runtime
constants to C is handled similarly except that the Fortran code calls C with
the required values. For example,

subroutine PetscSetFromCommonBlock()
implicit none

#include <petsc/finclude/petscsys.h>

206 Software Engineering for Science

call PetscSetFortranBasePointers(PETSC_NULL_CHARACTER,
PETSC_NULL_INTEGER,PETSC_NULL_DOUBLE,PETSC_NULL_OBJECT,
PETSC_NULL_FUNCTION)

return
end

passes the addresses within a common block to C.

PetscChar(80) PETSC_NULL_CHARACTER
PetscInt PETSC_NULL_INTEGER
PetscFortranDouble PETSC_NULL_DOUBLE
PetscObject PETSC_NULL_OBJECT
external PETSC_NULL_FUNCTION
common /petscfortran/ PETSC_NULL_CHARACTER,

PETSC_NULL_INTEGER,
PETSC_NULL_DOUBLE,
PETSC_NULL_OBJECT

The following C routine called from Fortran then puts the values of the Fortran
common block addresses and external function into global C variables.

void STDCALL petscsetfortranbasepointers_(char *fnull_character
PETSC_MIXED_LEN(len),
void *fnull_integer,
void *fnull_double,
void *fnull_object,
void (*fnull_func)(void)
PETSC_END_LEN(len))

{
PETSC_NULL_CHARACTER_Fortran = fnull_character;
PETSC_NULL_INTEGER_Fortran = fnull_integer;
PETSC_NULL_DOUBLE_Fortran = fnull_double;
PETSC_NULL_OBJECT_Fortran = fnull_object;
PETSC_NULL_FUNCTION_Fortran = fnull_func;

}

Note that since traditional Fortran has no concept of a common block variable
declared as a function pointer, the PETSC_NULL_FUNCTION is simply declared
with the external marker. This construct for managing null pointer usage in
Fortran is needed because Fortran has no concept of a generic NULL. Instead,
one needs a NULL for each data type; then in the C stub called from Fortran,
the specific NULL data type is converted to the C NULL, for example,

void STDCALL matcreateseqaij_(MPI_Comm *comm,PetscInt *m,
PetscInt *n,PetscInt *nz,
PetscInt *nnz,Mat *newmat,
PetscErrorCode *ierr)

Providing Mixed-Language and Legacy Support in a Library 207

{
if ((void*)(uintptr_t)nnz == PETSC_NULL_INTEGER_Fortran)

{ nnz = NULL; }
ierr = MatCreateSeqAIJ(MPI_Comm_f2c((MPI_Fint*)comm),*m,*n,

*nz,nnz,newmat);
}

PETSc also has many runtime constants in the style of MPI_COMM_WORLD,
such as PETSC_VIEWER_STDOUT_WORLD, which are handled similarly but are
compile-time constants in Fortran. In Fortran they are defined as integers via
the parameter statement.

PetscFortranAddr PETSC_VIEWER_STDOUT_WORLD
parameter (PETSC_VIEWER_STDOUT_WORLD = 8)

Then the C stub checks whether the input is one of these special values and
converts to the appropriate runtime C value, for example,

#define PetscPatchDefaultViewers_Fortran(vin,v)
{

if ((*(PetscFortranAddr*)vin) ==
PETSC_VIEWER_DRAW_WORLD_FORTRAN){

v = PETSC_VIEWER_DRAW_WORLD;
} else if ((*(PetscFortranAddr*)vin) ==

PETSC_VIEWER_DRAW_SELF_FORTRAN){
v = PETSC_VIEWER_DRAW_SELF;

} else if ((*(PetscFortranAddr*)vin) ==
PETSC_VIEWER_STDOUT_WORLD_FORTRAN){

v = PETSC_VIEWER_STDOUT_WORLD;
} else ...
} else {

v = *vin;
}

}
void STDCALL vecview_(Vec *x,PetscViewer *vin,PetscErrorCode *ierr)
{

PetscViewer v;
PetscPatchDefaultViewers_Fortran(vin,v);
*ierr = VecView(*x,v);

}

Pointers in traditional Fortran to C arrays: PETSc makes widespread
use of array pointers in its API to allow efficient programmers access to “raw”
data structures. For example,

double *x;
Vec v;
VecGetArray(v,&x);

208 Software Engineering for Science

gives users direct access to the local values with a vector. Traditional Fortran
has no concept of an array pointer, which would severely limit the use of
some of PETSc’s functionality from traditional Fortran. Fortunately, again,
despite there having been no Fortran standard for this type of functionality, it
is still achievable and has been used in PETSc for over 20 years. In the user’s
Fortran code, an array of size one is declared as well as an integer long enough
to access anywhere in the memory space from that array offset (PetscOffset
is a 32-bit integer for 32-bit memory systems and a 64-bit integer for 64-bit
memory systems).

Vec X
PetscOffset lx_i
PetscScalar lx_v(1);

They then call, for example,

call VecGetArray(X,lx_v,lx_i,ierr)
call InitialGuessLocal(lx_v(lx_i),ierr)
call VecRestoreArray(X,lx_v,lx_i,ierr)

where InitialGuessLocal is defined, for example, as

subroutine InitialGuessLocal(x,ierr)
implicit none
PetscInt xs,xe,ys,ye
common /pdata/ xs,xe,ys,ye
PetscScalar x(xs:xe,ys:ye)
PetscErrorCode ierr

! compute entries in the local portion of x()

This approach uses the fact that traditional Fortran passes by pointer, as
opposed to by value, and when passing array pointers does not distinguish
between one and multidimensional arrays. The PETSc C routine that manages
this is similar to the following code

void STDCALL vecgetarray_(Vec *x,PetscScalar *fa,size_t *ia,
PetscErrorCode *ierr)

{
PetscScalar *lx;
*ierr = VecGetArray(*x,&lx); if (*ierr) return;
*ierr = PetscScalarAddressToFortran(fa,lx,ia);

}

where

PetscErrorCode PetscScalarAddressToFortran(PetscScalar *base,
PetscScalar *addr,

Providing Mixed-Language and Legacy Support in a Library 209

size_t *ia)
{

size_t tmp1 = (size_t) base,tmp2;
size_t tmp3 = (size_t) addr;

if (tmp3 > tmp1) {/* C address is larger than Fortran
address */
tmp2 = (tmp3 - tmp1)/sizeof(PetscScalar);
*ia = tmp2;

} else { /* Fortran address is larger than C address */
tmp2 = (tmp1 - tmp3)/sizeof(PetscScalar);
*ia = -((size_t) tmp2);

}
}
calculates the appropriate signed displacement between the Fortran (dummy)
array and the actual C array. Although this may seem like a dangerous
“pointer” trick, it has worked for over 20 years on all systems to which we
have access. One caveat is that if the Fortran compiler contains support for
array “out of bounds” checking, this feature must be turned off (for exam-
ple, the IBM Fortran compiler has a command line option to turn on this
checking).

Array pointers in F90 to C arrays: With Fortran 90 array pointers it
became possible to simplify the Fortran user interface for routines such as
VecGetArray() to

PetscScalar,pointer :: lx_v(:)
Vec X

call VecGetArrayF90(X,lx_v,ierr)

This is implemented in PETSc by the C stub

void STDCALL vecgetarrayf90_(Vec *x, F90Array1d *ptr,int *ierr
PETSC_F90_2PTR_PROTO(ptrd))

{
PetscScalar *fa;
PetscInt len,one = 1;
*ierr = VecGetArray(*x,&fa); if (*ierr) return;
*ierr = VecGetLocalSize(*x,&len); if (*ierr) return;
*ierr = F90Array1dCreateScalar(fa,&one,&len,ptr

PETSC_F90_2PTR_PARAM(ptrd));
}

that calls the Fortran routine

subroutine F90Array1dCreateScalar(array,start,len1,ptr)

210 Software Engineering for Science

implicit none
#include <petsc/finclude/petscsys.h>
PetscInt start,len1
PetscScalar, target :: array(start:start+len1-1)
PetscScalar, pointer :: ptr(:)
ptr => array
end subroutine

The Portland Group Fortran compiler passes additional information about
each of the Fortran pointer arrays through final (hidden) arguments to the
called functions. With this system the PETSC_F90_2PTR_PROTO(ptrd) is de-
fined; on all other systems it generates nothing. The same general mechanism
outlined above for PetscScalar one-dimensional arrays also works (with mod-
ification) for multiple-dimensional arrays as well as arrays of integers. One
would think that with support for using F90 array features there would be no
need to continue to support the F77 compatible VecGetArray(); yet, surpris-
ingly large numbers of PETSc users continue to use the older version.

Portable Fortran source and include files: The Fortran standards pro-
vide a file format that is safe to use for all Fortran standards. This format
uses exclusively the ! in the first column, only numerical values in the second
to fifth column, a possible continuation character of & in the sixth column,
Fortran commands in the seventh to 71st column, and a possible continuation
character of & after the 72nd column. As long as this formatting is obeyed in
the libraries’ include files and source code, the code will compile with any For-
tran compiler. Note that using C for the comment character or any symbol but
the & for the continuation character will not be portable. A related issue with
ensuring that code does not exceed the 71st column is that the CPP macro
definitions in the Fortran include files may be longer than the name of the
macro, thus pushing characters that appear to be with the 71st column past
the 71st column. For example, depending on the Fortran compiler features
and PETSc options, PetscScalar may be defined as real(kind=selected_-
real_kind(10)), making user declarations such as

PetscScalar ainput,broot,ccase,dnile,erank

illegal with the fixed format.

Representing C objects in Fortran: PETSc is designed around a collec-
tion of abstract objects that have a variety of back-end implementations. For
example, the Mat object in PETSc that represents linear operators is repre-
sented in the users C code as

typedef struct _p_Mat* Mat;

This representation allows encapsulating the details of the matrix implemen-
tations outside the scope of the user code. The actual _p_Mat C struct contains

Providing Mixed-Language and Legacy Support in a Library 211

a variety of data records as well as function pointers that implement all the
matrix functionality for a particular matrix implementation. We provide two
ways of mapping the Mat object to Fortran. In the traditional approach we
use the fact that all Fortran variables are passed by pointer (i.e., the address
of the variable is passed to the subroutine). On the Fortran side the objects
are then just

#define Mat PetscFortranAddr

where, as before, PetscFortranAddr is either a 32- or 64-bit integer depending
on the size of the memory addresses. A drawback to this approach is that in
Fortran all PETSc objects are of the same type, so that the Fortran compiler
cannot detect a type mismatch. For example, calling MatMult() with a vector
object would not be flagged as incorrect. Hence we provide an alternative
configure time approach where each PETSc object family is defined by a
Fortran derived type and utilizes modules.

use petscmat
type(Mat) A

The corresponding definition in the PETSc module is simply

type Mat
PetscFortranAddr:: v

end type Mat

Again the simplicity of the Fortran pass-by-pointer argument handling means
that what is actually passed to a C stub is again an integer large enough to hold
the PETSc object (which is, of course, a pointer). In fact, this definition allows
the same Fortran application to refer to a Mat in some files using the traditional
approach (as an integer) and in other files using the modern approach (as
a Fortran derived type). With Fortran 2003 one no longer needs to use an
appropriately sized integer to hold the C pointer in Fortran. Instead, one can
use the construct

use iso_c_binding
type(c_ptr) :: A

to directly hold the C object pointer, or one can use

use iso_c_binding
type Mat

type(c_ptr) :: v
end type Mat

Handling function callbacks in Fortran: PETSc users writing in C employ
function callbacks to utilize much of the functionality of PETSc. For example,
to use the nonlinear solvers, the user provides a C function that defines the
nonlinear system,

212 Software Engineering for Science

PetscErrorCode func(SNES snes,Vec x,Vec f,void* ctx)
{

/* evaluate a mathematical function putting the result into ctx
}

In their main program, after they have created a PETSc nonlinear solver
object (called a SNES), they call

SNESSetFunction(snes,r,func,ctx);

The SNES object stores the function pointer and function context. Then when-
ever the PETSc nonlinear solver object needs to evaluate the nonlinear func-
tion, it simply calls the function pointer with appropriate arguments. Since
the function pointer is stored in the SNES object, multiple solvers can work
independently each with its own user functions. The user interface for Fortran
is almost identical to that used from C. The user provides a Fortran function,
for example,

subroutine func(snes,x,f,ctx,ierr)
SNES snes
Vec x,f,
type(fctx) ctx
PetscErrorCode ierr
! evaluate a mathematical function putting the result into ctx
return
end

and in the main program has

call SNESSetFunction(snes,r,func,ctx);

The PETSc code that supports this interface is essentially1 the following.

static struct {
PetscFortranCallbackId function;
PetscFortranCallbackId destroy;
PetscFortranCallbackId jacobian;

} _cb;
static PetscErrorCode oursnesfunction(SNES snes,Vec x,Vec f,

void *ctx)
{

PetscObjectUseFortranCallback(snes,_cb.function,(SNES*,Vec*,
Vec*, void*,PetscErrorCode*),
(&snes,&x,&f,_ctx,&ierr)));

}
void STDCALL snessetfunction_(SNES *snes,Vec *r,

1The PGI Fortran compiler introduces an additional hidden pointer argument that we
removed from this example to simplify the exposition.

Providing Mixed-Language and Legacy Support in a Library 213

void (STDCALL *func)(SNES*,Vec*,Vec*,
void*,PetscErrorCode*),void *ctx,
PetscErrorCode *ierr)

{
*ierr = PetscObjectSetFortranCallback((PetscObject)*snes,

PETSC_FORTRAN_CALLBACK_CLASS,&_cb.function,
(PetscVoidFunction)func,ctx);

if (!*ierr) *ierr = SNESSetFunction(*snes,*r,oursnesfunction,
NULL);

}

The routine PetscObjectUseFortranCallback() records the Fortran func-
tion pointer and context in the SNES object, which are then retrieved when
the user’s Fortran function is called.

In addition to introducing type(c_ptr) as discussed above for handling C
objects (pointers) in Fortran, the 2003 standard introduced type(c_funptr)
which represents a C function in Fortran. The standard also introduced For-
tran function pointers and methods for converting between C and Fortran
function pointers. Most important one can now directly declare a C function
in the Fortran code and have the Fortran compiler automatically generate
the stub code needed to call it from Fortran instead of requiring the user to
manually provide the stub. This is done, for example, with

function MyCfunction(A) result(output) bind(C,name="cfunction")
use iso_c_binding
integer(c_int) :: A,output

end function

which declares a C function with a single C int input that returns an int.
Fortran 2003 also provides c_null_ptr and c_null_funptr but still does not
provide a generic NULL that has the flexibility to be passed anywhere a pointer
is expected. The introduction of C bindings to the Fortran standard did not
actually introduce any capability that was previously unavailable; it merely
made the interface between C and Fortran simpler for those not familiar with
the relatively straightforward issues outlined above.

Providing Fortran interface definitions: Since C provides function dec-
larations that allow compile-time checking of argument types, Fortran 90 in-
troduced interfaces that serve a similar purpose in Fortran.

9.3 Automatically Generated Fortran Capability
For a C package with only a handful of functions and data types, one

can manually generate the appropriate Fortran function stubs (either using

214 Software Engineering for Science

the traditional approach or with the C binding capability of Fortran 2003),
Fortran interface definitions, and Fortran equivalent compile and runtime vari-
ables. However, for larger packages, especially those that evolve over time with
more functionality, manually producing the capability and maintaining it is
infeasible. Thus one must at least partially automate the process, much as
SWIG [320] is used to generate Python stubs for C libraries. The PETSc
team uses the Sowing package [322], developed by Bill Gropp for the MPICH
package, to automatically generate much of the Fortran capability. Sowing
generates both traditional Fortran stub functions and Fortran interface defi-
nitions for all C functions in the code that are “marked” by specific formatted
comments. It does not handle character string arguments or function pointer
arguments well, so those are handled in a partially manual manner. Since the
traditional Fortran stub approach continues to work well for PETSc and is
not a resource burden, we have not switched to using the Fortran 2003 C
binding method for Fortran stubs. Thus we cannot say for sure that the For-
tran 2003 C binding techniques would allow all the functionality from Fortran
that PETSc’s current techniques provide. Fully automatic generation of the C
binding definitions, including proper support for NULL arguments and Fortran
function pointers, would be a major exercise.

9.4 Conclusion
In PETSc, we have mapped all the C-based constructs needed by users,

including enums, abstract objects, array pointers, null pointers, and function
pointers (callbacks) to equivalent traditional Fortran and modern Fortran con-
structs, allowing Fortran PETSc users to utilize almost all the functionality
of PETSc in their choice of Fortran standard. This support has substantially
enlarged the user base for PETSc. We estimate that nearly one-third of our
users work in Fortran, and we can provide them high quality numerical library
support for modern algebraic solvers. As a result of automation of much of
the process, the cost of PETSc Fortran support is significantly less than 10
percent of our development time. In addition, the Fortran support allows ap-
plications that are written partially in C and partially in Fortran, although we
are not aware of many PETSc applications implemented in this way. Because
of user and legacy demands, it is still important to support the full suite of
F77, F90, F2003, F2011, and C interfaces. The advent of F2003 Fortran-C in-
teroperability features, while a good addition, did not fundamentally change
how PETSc supports Fortran users, nor did it allow us to discard outdated
interfacing technology. Instead, it allowed us to enhance the Fortran support
we already provided. The performance hit in using PETSc from Fortran rather
than C for any nontrivial problems, consisting of only a small extra function
call overhead, is negligible because of the granularity of the operations.

Providing Mixed-Language and Legacy Support in a Library 215

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357.

http://www.taylorandfrancis.com

