
Scalable repository workflows

Jed Brown∗

Abstract

Effective use of distributed version control improves code quality, testability, community partici-
pation, and release management. We identify attributes of scalable and robust repository workflow
and critique several popular workflows.

Healthy software projects require a community of users and contributors, testing new features,
offering new use cases, providing feedback on interface quality, and if the “bus factor” is to be kept
at reasonable levels, diving into the code and implementing new features and improvements. Projects
should choose a repository workflow that provides a pleasant experience for people in all these roles.
Distributed version control systems such as Git and Mercurial enable a smooth transition from “user”
to “contributor” by allowing outside people to participate using much the same workflow as the trusted
core developers. With the power and flexibility of systems like Git comes an array of choices about
workflow conventions that each project must decide upon. We propose the following principles for a
good repository workflow.

Low-interference Development and integration of separate features should not interfere with each
other unless there is a semantic conflict.

Tester-friendly While automated testing is important, there is no substitute for eager users that are
willing to stress new features and provide guidance for improvement and generalization. Trying
new features, reporting bugs, and discussing use cases should be facilitated.

Contributor-friendly People working outside the core team should have essentially the same devel-
opment workflow as a member of the core team. Usually this means working in a branch and
submitting a pull request or a patch series. Note that contributions often require several iterations
to converge to a good implementation with all the details correct.

Reviewable Review is an essential part of software quality control. It addresses a different class of bugs
and design choices than automated tests. Reviewing code is not sexy, so it is critical to choose a
workflow that encourages review and acknowledges its value.

Low-latency New features and bug fixes should be made available to users and other developers as
quickly as possible, so that they can be tested and so that new development can benefit from
recently-added features.

Stable New development should always start from a stable base so that bugs in a branch were almost
certainly introduced in that branch. Stability also allows downstream projects to receive features
on a faster time scale than formal releases without needing to worry about excessive volatility from
upstream. Finally, stable branches make the release process less disruptive because the branch is
essentially always ready to release. Stability should not rely on a maintainer making on-the-spot
decisions using evidence from only one machine or only the automated tests.

We now critique three popular workflows.
Centralized workflow. Projects transitioning from centralized systems such as Subversion often start
with the “simplest” model, which is to choose a single upstream repository that a group of core devel-
opers (or a single gatekeeper) can commit to. Each core developer commits on their master branch

∗Argonne National Laboratory, jedbrown@mcs.anl.gov

http://git-scm.com
http://mercurial.selenic.com
http://subversion.apache.org


and pushes when they feel that a feature is “done” or at least not broken. This workflow fails to expose
parallelism in development because every new feature is racing to commit to master, is difficult to
review because features that required several commits are often sprinkled among unrelated commits,
and reduces stability because every push to master entails a decision that will impact everyone else’s
development.
“git-flow”. Many of the problems above can be fixed by working in “topic branches” that are only
merged when complete and tested. Unfortunately, features are only tested in isolation and (perhaps)
via automated testing run by the maintainer that ultimately merges the branch. The git-flow workflow
adds release management, including a systematic way to fix bugs in production branches and integrate
them into new development. However, it fails to test new features branches in combination and provides
no easy way for testers to test features that are supposed to work, but may not be completely stable.
Decisions to merge a topic branch are still intimidating because new bugs will disrupt future topic
branches until the bug is fixed.
gitworkflows(7) and PETSc’s workflow. The workflow used by the Git project itself is described
in the gitworkflows(7) man page. PETSc has adapted this workflow slightly for use on bitbucket
(or github). There are three integration branches, maint for bug fixes against the last stable releases,
master for containing stable new features that will constitute the next feature release, and next for
testing and interaction of features that are thought to be stable. All development is done in feature
branches starting either from maint (especially for bug fixes) or master (most new features). At any
given time maint should be merged into master which is in turn merged into next.

Regular contributors are given push access to their own branches (integration branches are more re-
stricted) while other community members push to their own forks. Pushing topic branches is encouraged
as a checkpointing and backup mechanism, allowing passive review (e.g., via line commenting on the
website) and easy transfer between machines. Those unmerged topic branches can be amended/rebased
at any time because they have no “downstream”. When the author thinks a branch is complete, they
make a pull request (active review) or (if a core developer and confident that the feature is uncontro-
versial) merge directly to next. Merging a branch to next allows it to interact with other new features
and to receive testing by eager/brave users. Bugs discovered in next are fixed in the guilty topic branch
which is then merged back to next, but since new development never starts from next, such bugs
only disrupt testing, but never new development. Testers need only checkout the next branch and run
git pull to obtain the latest features thought to be complete, and can fall back to a stable version
by checking out master. Developers can see all recent development and identify potential conflicts or
overlapping effort early, even before the other developer considers their work to be complete.

Once a feature has demonstrated its stability in next, it “graduates” by being merged into master

(and maint if relevant). New branches can depend on other topics that are currently in next by
merging them, acknowledging that doing so will prevent graduation until those features are ready. After
a release cycle, next contains only merge commits and branches that were either discarded or were
not stable in time for the release, and is “rewound” for the next release cycle. The master branch is
always stable and the decision to merge to master is only made with evidence that the topic branch
has been playing nicely with everything else in next (which includes master). Looking down the “first
parent” history of master shows only merges of completed topics after they have demonstrated their
completeness in next. With good summaries in the merge commits, the changelog for a release cycle
can be automatically extracted from the topology of the merge history.

http://nvie.com/posts/a-successful-git-branching-model/
https://www.kernel.org/pub/software/scm/git/docs/gitworkflows.html
http://mcs.anl.gov/petsc
https://bitbucket.org
https://github.com
http://git-blame.blogspot.com/2013/09/fun-with-first-parent-history.html
http://git-blame.blogspot.com/2013/09/fun-with-first-parent-history.html


Acknowledgments. The author is supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research under Contract DE-AC02-06CH11357.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to
the public, and perform publicly and display publicly, by or on behalf of the Government.


