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Build-time configuration and environment assumptions are hampering progress and usability in scientific software. 
This situation, which would be utterly unacceptable in nonscientific software, somehow passes for the norm in 
scientific packages. The scientific software community needs reusable, easy-to-use software packages that are 
flexible enough to accommodate next-generation simulation and analysis demands.

I
’d like you to use our new Web browser, Fire-
tran! It renders HTML 10 percent faster than 
Firefox—but only if there’s no JavaScript; if you 
want JavaScript, you can recompile (though our 

performance tests don’t cover that configuration). 
The character encoding is compiled in, for efficiency. 
Firetran has a great plug-in community—developers 
add code directly to the Web browser core, guarded 
by a #ifdef. Some developers change Firetran and 
distribute their own mutually incompatible versions. 
(Naturally, users of those packages submit bug re-
ports to us that we haven’t been able to reproduce 
with our version.) Proxy configuration is compiled 
in so you don’t have to worry about run-time con-
figuration dialogs: all you do is edit a makefile and 
recompile. To keep you secure, Firetran’s https ver-
sion can’t use http, and vice versa. And, while the 
browser is open source, our development is private; 
if you submit a bug report or a patch, you’ll likely 
receive the following message: We fixed that in the 
private repository last year; we’ll make a release when 
the paper comes out. If you have to view that website, 
fill out the attached form and fax us a signed copy.

Firetran has a parental filter feature that lets you list 
a maximum of 16 websites in a source file; the browser 
will refuse to visit any site not on the list. Also, Firetran 
can be compiled only with last year’s version of the 

ACME Fortran77 compiler. The build system consists 
of csh, perl, m4, and BSD make. Firetran has no URL 
entry box; to visit a page, you edit a configuration file 
and run the program. A graduate student wrote a Tcl 
script with a text entry box to automate both configura-
tion file editing and rerunning the Firetran executable. 
The script is hard to understand, but many in the com-
munity believe the way forward is to enhance the script 
to detect whether the website needs https or http, Ja-
vaScript, and so on, and recompile Firetran on the spot.

Needless to say, Firetran struggles to acquire mar-
ket share. Yet Firetran’s choices represent the status quo 
in many scientific software packages—which are often 
vehemently defended. If it’s laughably unacceptable 
in nonscientific software, why is it tolerated in scien-
tific software? Are scientists suffering from Stockholm 
Syndrome? Is scientific software so fundamentally dif-
ferent from other software? How could scientific soft-
ware benefit from adopting the techniques we take for 
granted in nonscientific software? 

Here, we’ll examine these issues, starting with 
where scientific simulation software is headed.

Trends in Simulation-Based Science 
and Engineering
Modern computational science and engineering 
is increasingly defined by multiphysics, multiscale 
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 simulation1 while raising the level of abstraction to 
risk-aware design and decision problems. This evolu-
tion unavoidably involves deeper software stacks and 
the cooperation of distributed teams from multiple dis-
ciplines. Meanwhile, each application area  continues 
to innovate and can be characterized as much by   
its forms of extensibility—such as boundary condi-
tions, geometry, subgrid closures, analysis techniques, 
data sources, and inherent uncertainty/bias—as by 
the underlying equations. Original authors can no 
longer foresee all the use cases for their software. 
Many common configuration and extensibility ap-
proaches create artificial bottlenecks that impede sci-
ence goals, and the only sustainable approach is to 
defer all configuration and extensibility to run-time. 
Doing this effectively pushes applications to mini-
mize the assumptions made about their environment, 
resulting in applications that are more like libraries— 
better suited to coupling with other models and per-
forming advanced analysis.

Compile-Time Configuration
Many applications, especially those written in For-
tran, perform configuration in the build system. (Al-
ternatives were limited prior to Fortran 2003's ISO 
C bindings and now TS29113, which is slated for 
Fortran2015.) The motivation for configuration in 
the build system stems from various efficiency con-
cerns (often ill-founded or fixable by adjusting inter-
face granularity), software tool limitations (such as in 
algorithmic differentiation), poor language support, 
perceived implementation complexity, and short-
term value assessment. Once a package chooses com-
pile-time configuration, the build system becomes a 
public API used by scripts that perform higher-level 
analysis. Ad hoc public APIs inhibit software evolu-
tion by imposing an unintentionally high cost on 
change as well as dilution of  effort to meet short-term 
deliverables.

In applications that rely on build-time code 
generation or pragma-based specialization and 
optimization, or those written in C++ with heavy 
template use, the possible combinations must be 
enumerated at compile-time. Although templates 
aren’t exclusive (you can compile several variants in 
the same application), it’s common to see a com-
binatorial explosion of variants as well as a direct 
exposure of templates in public interfaces. Because 
developers can’t compile all combinations into one 
application, any analysis or testing that explores 
a large or unpredictable part of the combinations 
space must include recompilation. Attempting to 
push the size limits leads to

 ■ error-prone workarounds such as -mcmodel=large 
(a compiler option that affects linking/
compatibility);

 ■ processes spanning more than one NUMA 
node (degrading memory locality); and

 ■ the inability to run the application on low- 
memory architectures that might otherwise suit it.

Compute nodes often don’t have access to com-
pilers, making all build-system and compile-time 
decisions inaccessible to online analysis. A given 
application might be unable to run in both config-
urations on different nodes or on different MPI com-
municators. This limits analysis capability, requires 
frequent recompilation, and increases user errors re-
sulting from accidentally using the wrong compiled 
version. The batch queues’ length exacerbates the is-
sue, sometimes requiring days between compiling an 
application and actually running it. Every compat-
ibility that must be maintained by hand is another 
opportunity for mistakes, some of which the user 
might not realize prior to publication.

Some applications create sophisticated scripts for 
maintaining consistency through the compilation 
and batch submission process. These scripts must be 
ported to each architecture, increasing the complex-
ity both of application debugging and of reproducing 
problems encountered on particular architectures.

Integration tests often must be submitted to 
batch systems. If different integration tests require 
that different dependencies be compiled differently, 
those different versions must be built in advance 
and kept straight through the test submission and 
run. When many configurations are needed, the 
multiple required compilations tend to take a long 
time and burn through the disk quota.

Advanced Analysis
As models mature in each application area, emphasis 
shifts from qualitative and subjective interpretation 
of model output to quantitative analysis of accu-
racy, reliability, and parameter influence on the tar-
get quantities. Correspondingly, today’s models are 
increasingly used as both forward models and as the 
target of advanced analysis techniques such as sto-
chastic optimization, risk-aware decisions, and stabil-
ity analysis. The forward model must then expose an 
interface for each form of modification that the anal-
ysis levels can  explore. An interface requiring build-
time modification shifts an unacceptable complexity 
burden to the analysis software and is algorithmically 
constraining—limiting parallelism, introducing artifi-
cial bottlenecks, and preventing some algorithms.
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In lieu of tractable deterministic techniques for 
calibrating empirical phenomenological  models, 
tremendous expert time must be spent tuning 
 parameters. In fields such as climate, earthquakes, and 
molecular dynamics, this calibration is notoriously 
sensitive to numerical methods, temporal and/or 
spatial resolution, and other simulation models. Yet, 
when faced with this extreme uncertainty and vola-
tility, these parameters are often hard-coded in the 
source, thwarting reasonable attempts to automate 
the calibration or model comparisons.

Model Coupling
Visionary scientists operating in a single domain 
have produced a large fraction of successful scientific 
software. Such visionaries predicted many impor-
tant model configurations and analysis types, and 
the community has been largely content to explore 
within their fuzzy scopes. Each package has been 
king of its own environment and thus choices were 
often made without concern for interoperability 
or impact on other packages. However, the gaping 
holes in our scientific understanding and engineer-
ing capability lie increasingly in the gaps not covered 
by these mature packages.

Rarely do multiple models operate on identi-
cal spatial and temporal scales with similar model 
and parameter uncertainties. Thus, coupling often 
requires grappling with multiscale phenomena and 
high-variance statistics, each an algorithmic chal-
lenge in its own right. When components make 
excessive assumptions about their environment, 
attempts to couple are either written off or algo-
rithmic quality falls by the wayside, leading to nom-
inally coupled simulations that are unreliable at best 
and, in most cases, effectively nonconvergent.

The most powerful and pragmatic software ap-
proach we know of is to formulate models as libraries 
with a clean interface hierarchy that lets the external 
client compose the key capabilities into a coupled 
model without the higher-level parts that would algo-
rithmically constrain a coupled model. This approach 
has repeatedly demonstrated its effectiveness outside 
of scientific computing in areas traditionally domi-
nated by standalone applications, such as compilers 
(LLVM), Web browsers (KHTML/WebKit), and 
SQL databases (SQLite). Although process isolation 
can be useful for security (as in qmail and postfix), re-
liability (Web browser tabs), and distribution (remote 
databases), it’s easier to add isolation upon library 
interfaces than to add composition/embedding atop 
process separation, especially in HPC environments 
for which oversubscription is usually catastrophic.

Provenance and Usability
Reproducibility and provenance are perpetual 
challenges of computational science that become 
more acute as the software stack deepens and a 
larger number of models, each of greater complex-
ity, are coupled. How can we capture the state of 
all configuration knobs so that a computational 
experiment can be reproduced? Compare the com-
plexity of a single configuration file to be read at 
run-time with that of a heterogeneous configura-
tion consisting of multiple build systems, files 
passed from earlier stages of computation, and 
run-time configuration. Provenance is simplified if 
we use each package without modification, com-
pile them in a standard way, and control them en-
tirely via run-time options. This implies that any 
libraries the application uses (transitively) must 
be responsible libraries that adhere to the prin-
ciples discussed here and elsewhere.2 For both 
maintenance and provenance reasons, custom 
components needed for a given computational 
experiment are better placed in version-controlled 
plug-ins instead of being implemented by modify-
ing upstream  sources. To support a coherent top-
level specification in a system with build-time or 
source-level choices, those configuration options 
must be plumbed through all the intermediate lev-
els, often resulting in another layer of “workflow” 
scripts and bloated, brittle high-level interfaces.

Big Data
Workflows that involve multiple executables usu-
ally pass information through the file system. It takes 
about an hour to read or write the contents of volatile 
memory to global storage on today’s top machines, 
assuming that peak I/O bandwidth is reached. The 
largest allocations (as in INCITE or ALCC awards) 
are on the order of tens of millions of core hours, 
which means the entire annual compute budget can 
be burned in a few reads and writes. Global storage as 
an algorithmic mechanism is dead: where out-of-core 
algorithms were used in the past, today’s scientists 
can simply run on more cores, up to the entire ma-
chine; but, if the entire machine doesn’t have enough 
storage, the allocation simply doesn’t have the budget 
to run an out-of-core algorithm.

If a different application or different applica-
tion version must be used for the simulation/analy-
sis pipeline’s next stage, data must be dumped to the 
file system. In situ analysis provides an excellent op-
portunity to increase efficiency by reducing depen-
dence on the file system, but it’s viable only if the 
more varied analysis workflow can be performed in 
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the same application. Interfaces for exchanging data 
in-memory between different software components 
could be the same as those used to describe data sets 
for parallel IO.

Some of today’s simulations support a large and 
diverse community that analyzes the output. Transi-
tioning to in situ analysis will require dynamic and 
extensive analysis interfaces to support varied analy-
sis demands. Unlike most parts of mature simula-
tion software, the analysis code often changes with 
each question a scientist asks and thus is highly 
volatile and doesn’t benefit from the same amount 
of testing.

Nested Dependencies
Some library dependencies are indirect (transitive) 
via some intermediate interface that the applica-
tion actually intends to depend on.  A key soft-
ware engineering principle is that of encapsulation, 
 allowing clients to depend only on interfaces that 
it uses  directly, rather than on implementation 
concerns. Encapsulation isn’t possible if a transi-
tive dependency must be reconfigured for each use 
case, and combining uses into one application can 
cause conflicts. The build system for any “library” 
that requires  use-specific configuration effectively 
becomes a public API that top-level components 
must interact with, even when the library is used 
only indirectly.

A single library can be used by multiple com-
ponents in the same executable. This might be rare 
when a library is first being developed, but it’s com-
mon among popular and versatile libraries. If a li-
brary has mutually incompatible configurations, the 
entire executable can use only one version unless the 
library developer has taken great care (this is often 
impractical, especially when linking statically—an 
unfortunate necessity on many HPC architectures). 
Even in the best case, needing to use multiple ver-
sions complicates the installation and debugging 
process, invariably leading to a degraded user expe-
rience and increased support workload for library 
maintainers.

User Modifications
Software project fragmentation is notoriously expen-
sive and should be avoided when possible. Maintain-
ing local modifications with no plan for upstreaming 
is a recipe for divergent design—technical debt that 
must be paid off to combine the features developed in 
each fork. Fragmentation is especially toxic for librar-
ies that might be used by multiple higher-level pack-
ages combined by the overall experiment.

Packaging and Distribution
Software developers often underestimate the chal-
lenge of installing their own packages. From the 
user experience perspective, it hardly matters if 
an installation failure was caused by a user’s bro-
ken environment (a circumstance all too familiar 
to maintainers of popular packages). Upgrading 
an OS can break existing package installs if the 
underlying system libraries change. The most reli-
able way to distribute packages that will always be 
in sync with the OS is to have them packaged by 
many common OSs, such as Debian APT, RedHat 
RPM, MacPorts, and so on. Configure-time op-
tions are package distribution’s bane because each 
variant must be named and conflicts between the 
variants resolved. Packagers for binary distributions 
(which are most convenient for users) are justifi-
ably paranoid about the binary interface and hence 
will be reluctant to package software with frag-
mented configuration options.

implementation and Recommendations
To manage these workflow challenges, application 
developers must think more like library developers2 

and control namespaces; avoid global state; relinquish 
top-level control; control the parallelism’s scope; local-
ize memory allocation; localize complexity so that it 
doesn’t “bubble up” to the top level; and pay atten-
tion to the completeness, generality, stability, and ex-
tensibility of all public interfaces. Our suggestions are 
shaped by experience developing and supporting the 
Portable Extensible Toolkit for Scientific computa-
tion (PETSc)3,4 as well as other packages, from low-
level libraries to end-user applications. Developers 
have implemented similar ideas for extensibility and 
run-time configuration in applications such as Mul-
tiphysics Object-Oriented Simulation Environment 
(MOOSE; http://mooseframework.org) and PyLith 
(http://geodynamics.org/cig/software/pylith).

Resource Allocation
To localize configuration, allocating resources such 
as memory should be done locally, with reference 
counting when appropriate. Contrary to urban leg-
end, static memory allocation offers no tangible per-
formance advantage (so long as dynamic allocations 
are amortized) and unavoidably ties the workflow 
into the build system while committing the sin of 
needless global variables. Different malloc imple-
mentations have varying performance, especially in 
multithreaded scenarios. If necessary, fast implemen-
tations like TCMalloc (http://goog-perftools.source-
forge.net/doc/tcmalloc.html) can be  recommended, 
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but it’s better to contain this complexity in favor 
of good performance with any malloc. Performant 
allocation can be achieved by associating memory 
pools or work arrays with algorithm objects, so that 
malloc isn’t called in inner loops.

Plug-ins
Source-level dependencies on an implementation 
(such as directly instantiating a derived class) 
rather than a generic interface cause choices from 
deep in the stack to “bubble up” via brittle inter-
faces that plumb the user’s configuration to the 
appropriate component. Plug-ins provide a strong 
way to identify interfaces that can be extended 
by users and distributed separately from the core 
package. For example, every class in PETSc has 
a plug-in architecture, from base linear algebra 
components to preconditioners, nonlinear solv-
ers, and adaptive controllers for time integration. 
A plug-in can provide any of these components, 
which will be indistinguishable from a PETSc na-
tive component. Plug-ins consist of a registration 
function called via dlopen()—a creation func-
tion called when the plug-in is activated (such as 
instantiating an object implemented in the plug-
in)—and any supporting functions that will be 
exposed via the object’s methods. Historically, 
Fortran’s type system and inability to store func-
tion pointers have conspired against plug-in im-
plementations, but the new standard provides the 
necessary tools.

Plug-ins also provide a mechanism to invert de-
pendencies without creating dependency loops. For 
example, suppose libB depends on libA, but we 
would like to provide an optional implementation 
of an interface in libA that depends on libB. We 
can’t put it in libA because this would make a cyclic 
dependency, but it’s unrelated to libB’s public inter-
face, so it doesn’t belong there either. We can create 
libA-plugin that depends on both libA and libB, 
registering itself as a plug-in of libA and calling 
into libB in its implementation. Plug-ins can also 
be used for optional interfaces to third-party librar-
ies. It’s best to have plug-in search paths from which 
plug-ins are loaded by dlopen, so that they can be 
distributed independently from the base system 
without requiring relinking. Shared libraries should 
be versioned (-soname on most POSIX systems, and 
-current_version and -compatibility_version 
on OSX) to make this distribution more reliable and 
to assist the layers built on top. (More information 
on shared library versioning and controlling symbol 
visibility is available elsewhere.5)

Although distribution via shared libraries is 
convenient for users and packagers, some important 
HPC execution environments don’t support shared 
libraries. If you must use such antiproductive en-
vironments, the plug-in structure can be preserved, 
but the build system must ultimately be able to link 
everything statically. For an application, this typi-
cally means that plug-in source trees are placed in 
a location that the build system picks up; code to 
call the registration function is then generated and 
everything is linked together. For a library, plug-ins 
either must be compiled into a single static archive 
or the user must explicitly link the plug-ins (in the 
correct order). The linking interface is a public in-
terface, so changing it shouldn’t be taken lightly. The 
library can either distribute a tool that determines 
which plug-ins are available and generates a suitable 
link line, or it can create a static archive contain-
ing all plug-ins. Unfortunately, the pkg-config tool 
is not sufficient to manage multiple configurations 
and optional dependencies, so many libraries must 
have their own executable. Wrapper compilers are 
exclusive (only one library can use a wrapper com-
piler), and thus they should be avoided.

Inversion of Control, Recursive Configuration, 
and the Options Database
Software libraries’ primary purpose is to contain 
complexity. Public interfaces should be as simple as 
possible (but no simpler), meaning that transitive 
complexity must not be a mandatory part of the pub-
lic interface. Furthermore, extensible components 
aren’t known at compile-time (indeed, they might not 
have been written yet) and thus would be rendered 
useless if implementation complexity leaked into the 
public interface. It should be possible to instantiate 
the same plug-in (implementation unknown to client 
code) at different locations in the object graph, each 
with its own configuration. Because the client doesn’t 
know how to configure the object, some inversion of 
control6 is necessary. PETSc’s approach is similar to 
service locator,6 but new projects should consider sev-
eral variations. In PETSc, multiple objects’ instances 
are distinguished by a prefix in the options database, 
allowing conflict-free, run-time configuration. For 
example, a multiphysics solver might use a block de-
composition and geometric-algebraic multigrid with 
choices and diagnostics for each block and at each 
level of one or more multigrid solves, each instance 
of which we distinguish by prefix. The basic principle 
is to choose good defaults and defer precise configu-
ration to the run-time interface. Some packages take 
dynamic extensibility further by embedding a Turing-
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complete programming language such as Lua, JavaS-
cript, or Scheme.

PETSc also acknowledges that some users take 
active control over method configuration, adapting 
it in response to the physical regime or other fac-
tors. Such control is more naturally implemented 
and debugged with an object-based run-time inter-
face; thus, any run-time configuration exposed via 
the options database is also exposed via the object-
oriented interface. The most challenging compro-
mise in this scenario occurs when an algorithm 
adaptively configures recursive levels, but the cli-
ent wants to actively configure portions. Solutions 
include fine-grained interfaces for “forcing” (in the 
lazy functional programming sense) certain parts of 
the setup and callbacks to configure portions when 
reached. Neither is completely satisfactory.

Object-Oriented Design
We turn now to some contentious issues in object-
oriented with which we’re less than enamored with 
the oft-repeated recommendations.

Partial implementation. Some people believe that all 
errors should be compile-time errors; thus, any in-
compatibility must be visible to the compiler. Unfor-
tunately, this approach leads to extremely complicated 
and fragile type hierarchies. For example, a Matrix is 
a linear transformation on finite-dimensional vector 
spaces. Should a Matrix have computable entries? 
Should the diagonal be extractable? Can the trans-
pose be applied? Are Neumann subproblems available 
(that is, matrices with certain properties whose sum 
equals the original matrix)? 

Although matrix entries can be computed in 
principle, the space and time complexity can be so 
unaffordable as to render that representation useless. 
Meanwhile, other operations that are unaffordable 
for explicitly stored matrices might be fast for matri-
ces with special structure. Different preconditioners 
(which might reside in plug-ins) can require different 
functionality from the Matrix. Any type system that 
can guarantee full implementation of a given Matrix 
interface will end up conflating the desired generic 
interface with implementation-specific semantics, 
especially when the Matrix type is also extensible, 
leading to undesirable dependencies and leakage of 
transitive complexity. Moreover, the “not implement-
ed” run-time error is likely to be more understand-
able than a type mismatch error.

changing the run-time implementation. PETSc 
has found it useful for major objects to change 

 implementations—such as from multigrid to a 
direct solve—at run-time. One object can have 
many dependencies/references and be referenced 
by many other objects. If the implementation can 
be changed only at object creation, the user ends 
up holding factory objects (or the equivalent) 
solely to recreate “similar” objects. Someone must 
be responsible for keeping track of these factory 
objects and rewiring the dependencies when re-
placing an existing object. This turns out to be 
messy and error-prone; PETSc thus chose to ab-
sorb the “factory” functionality into the object 
itself, allowing reconfiguration of any sort, at any 
time. This also removes the need for special inter-
faces to pass a factory object around to all compo-
nents that should have a say in that new object’s 
configuration.

controlling the binary interface. Time spent recom-
piling code is nothing but wasted productivity. 
Implementation concerns such as private variables 
and new (virtual) methods should never require 
client code recompilation. PETSc uses a delegator 
pattern (also known as a “pointer to implemen-
tation”7 or bridge8 pattern) to keep such imple-
mentation concerns out of the binary interface, 
thus minimizing recompilation and enabling 
binary distribution of shared library5 upgrades. 
This is idiomatic in C, where “objects” are typi-
cally implemented via opaque pointers, but often 
under-utilized in C++ because it entails a bit more 
boilerplate than the native object model that re-
veals the classes’ private contents. Delegator in-
curs an additional static function call, but tests 
with classic virtual methods and delegator indi-
cate that the main function call overhead (several 
cycles) comes from the indirect call (virtual func-
tion) rather than the static call to the delegator, 
thus the incremental cost of using the delegator 
pattern is usually less than two cycles. An ancil-
lary benefit of the delegator pattern is that there’s 
a unique place to set a debugging breakpoint for 
each function (rather than having to choose the 
correct virtual function) and a common place for 
input validation.

It’s increasingly popular to expose librar-
ies through more dynamic environments such as 
Python or Julia. Because different languages have 
different type systems, it’s easier and more reliable 
to develop language bindings with a simple type 
system and stable binary interface. Naturally, stat-
ic methods and opaque pointers are simpler than 
struct definitions and template-based systems.
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Just-in-Time Compilation
With fine-grained composition (such as that in ma-
terial models and Riemann solvers) and fusion of 
memory-intensive operations, the number of pos-
sible compositions grows combinatorially; in any 
specific run, however, only a few are important. 
Precompiling and dispatching (via C++ templates 
or other inlining techniques) every combination 
leads to large compile times, bloated executables, 
confusing debugging, and compromises about 
which combinations will be made available.

Although a dynamic interface is far more main-
tainable, the performance overhead is unacceptable 
for certain applications. When the interface granu-
larity can’t be increased to amortize the overhead of 
dynamicism, just-in-time (JIT) compilation is an 
attractive approach to preserve strong encapsulation 
and debuggability. We expect technologies such as 
LLVM and OpenCL to become ubiquitous, allow-
ing judicious use of JIT for dynamic kernel fusion 
and plug-in-style packaging of fine-grained compo-
nents without sacrificing performance. This might 
involve tighter integration with languages like Julia 
and the Numba package for Python, or language 
extensions to support JIT within traditionally com-
piled languages.

Upstreaming, Distribution, and 
Community Building
To provide attractive alternatives to forking, main-
tainers must be diligent in creating a welcoming 
environment for upstream contributions. The 
maintainers should nurture a community that 
can review contributions, advise about new de-
velopment approaches, and test new features, 
while recognizing all forms of contribution. In a 
transparent community, paper reviewers can eas-
ily determine who did the work to implement a 
new feature; thus any attempt to “scoop” a result 
based on new capability is easily spotted. We be-
lieve that scooping is a purely social problem and 
that the secrecy inherent in any technical solution 
is so costly as to rarely be justified. Several major 
tech companies have famously underestimated this 
cost when forking open source packages such as 
the Linux kernel for internal use, later repaying 
the technical debt to reintegrate with upstream. In 
science, it’s exceedingly difficult to obtain funding 
to pay off the technical debt incurred by forking, 
leading to a wasteland of abandoned forks. This is 
contrary to the interests of stakeholders, ranging 
from the program managers and taxpayers to other 
scientists in the field.

In addition to community building,9 develop-
ers should provide versatile extension points so that 
contributions can be made without compromising 
existing functionality and without degrading package 
maintainability. Developers should see this as a techni-
cal prerequisite for maintainable extension rather than 
private forking. Such extensions must be accompanied 
by tests lest they break as interfaces evolve. It’s far eas-
ier to write tests for dynamic configuration sets than 
to add new build-time configurations. Additionally, 
compilers and static analysis tools can check combi-
nations that are not actively used. In contrast, condi-
tional compilation (#ifdef) is not checked, invariably 
leading to more frequent breakage by other develop-
ers (in the test suite, if covered; otherwise the breakage 
will be found by users and other developers).

Configuration and environment design decisions 
made by developers of today’s scientific librar-

ies and applications are often disproportionately 
harmful to usability, productivity, and capability. In 
such cases, the most effective way to increase scien-
tific or engineering value is to design and refactor 
software using best practices for extensible library 
 development. 
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