
38 Computing in Science & Engineering 1521-9615/15/$31.00 © 2015 IEEE Copublished by the IEEE CS and the AIP January/February 2015

Run-Time Extensibility and Librarization of
Simulation Software

Jed Brown | Argonne National Laboratory and University of Colorado Boulder

Matthew G. Knepley | University of Chicago

Barry F. Smith | Argonne National Laboratory

Build-time configuration and environment assumptions are hampering progress and usability in scientific software.
This situation, which would be utterly unacceptable in nonscientific software, somehow passes for the norm in
scientific packages. The scientific software community needs reusable, easy-to-use software packages that are
flexible enough to accommodate next-generation simulation and analysis demands.

I
’d like you to use our new Web browser, Fire-
tran! It renders HTML 10 percent faster than
Firefox—but only if there’s no JavaScript; if you
want JavaScript, you can recompile (though our

performance tests don’t cover that configuration).
The character encoding is compiled in, for efficiency.
Firetran has a great plug-in community—developers
add code directly to the Web browser core, guarded
by a #ifdef. Some developers change Firetran and
distribute their own mutually incompatible versions.
(Naturally, users of those packages submit bug re-
ports to us that we haven’t been able to reproduce
with our version.) Proxy configuration is compiled
in so you don’t have to worry about run-time con-
figuration dialogs: all you do is edit a makefile and
recompile. To keep you secure, Firetran’s https ver-
sion can’t use http, and vice versa. And, while the
browser is open source, our development is private;
if you submit a bug report or a patch, you’ll likely
receive the following message: We fixed that in the
private repository last year; we’ll make a release when
the paper comes out. If you have to view that website,
fill out the attached form and fax us a signed copy.

Firetran has a parental filter feature that lets you list
a maximum of 16 websites in a source file; the browser
will refuse to visit any site not on the list. Also, Firetran
can be compiled only with last year’s version of the

ACME Fortran77 compiler. The build system consists
of csh, perl, m4, and BSD make. Firetran has no URL
entry box; to visit a page, you edit a configuration file
and run the program. A graduate student wrote a Tcl
script with a text entry box to automate both configura-
tion file editing and rerunning the Firetran executable.
The script is hard to understand, but many in the com-
munity believe the way forward is to enhance the script
to detect whether the website needs https or http, Ja-
vaScript, and so on, and recompile Firetran on the spot.

Needless to say, Firetran struggles to acquire mar-
ket share. Yet Firetran’s choices represent the status quo
in many scientific software packages—which are often
vehemently defended. If it’s laughably unacceptable
in nonscientific software, why is it tolerated in scien-
tific software? Are scientists suffering from Stockholm
Syndrome? Is scientific software so fundamentally dif-
ferent from other software? How could scientific soft-
ware benefit from adopting the techniques we take for
granted in nonscientific software?

Here, we’ll examine these issues, starting with
where scientific simulation software is headed.

Trends in Simulation-Based Science
and Engineering
Modern computational science and engineering
is increasingly defined by multiphysics, multiscale

SciEnTiFic SoFTwaRE coMMuniTiES

www.computer.org/cise 39

 simulation1 while raising the level of abstraction to
risk-aware design and decision problems. This evolu-
tion unavoidably involves deeper software stacks and
the cooperation of distributed teams from multiple dis-
ciplines. Meanwhile, each application area continues
to innovate and can be characterized as much by
its forms of extensibility—such as boundary condi-
tions, geometry, subgrid closures, analysis techniques,
data sources, and inherent uncertainty/bias—as by
the underlying equations. Original authors can no
longer foresee all the use cases for their software.
Many common configuration and extensibility ap-
proaches create artificial bottlenecks that impede sci-
ence goals, and the only sustainable approach is to
defer all configuration and extensibility to run-time.
Doing this effectively pushes applications to mini-
mize the assumptions made about their environment,
resulting in applications that are more like libraries—
better suited to coupling with other models and per-
forming advanced analysis.

Compile-Time Configuration
Many applications, especially those written in For-
tran, perform configuration in the build system. (Al-
ternatives were limited prior to Fortran 2003's ISO
C bindings and now TS29113, which is slated for
Fortran2015.) The motivation for configuration in
the build system stems from various efficiency con-
cerns (often ill-founded or fixable by adjusting inter-
face granularity), software tool limitations (such as in
algorithmic differentiation), poor language support,
perceived implementation complexity, and short-
term value assessment. Once a package chooses com-
pile-time configuration, the build system becomes a
public API used by scripts that perform higher-level
analysis. Ad hoc public APIs inhibit software evolu-
tion by imposing an unintentionally high cost on
change as well as dilution of effort to meet short-term
deliverables.

In applications that rely on build-time code
generation or pragma-based specialization and
optimization, or those written in C++ with heavy
template use, the possible combinations must be
enumerated at compile-time. Although templates
aren’t exclusive (you can compile several variants in
the same application), it’s common to see a com-
binatorial explosion of variants as well as a direct
exposure of templates in public interfaces. Because
developers can’t compile all combinations into one
application, any analysis or testing that explores
a large or unpredictable part of the combinations
space must include recompilation. Attempting to
push the size limits leads to

 ■ error-prone workarounds such as -mcmodel=large
(a compiler option that affects linking/
compatibility);

 ■ processes spanning more than one NUMA
node (degrading memory locality); and

 ■ the inability to run the application on low-
memory architectures that might otherwise suit it.

Compute nodes often don’t have access to com-
pilers, making all build-system and compile-time
decisions inaccessible to online analysis. A given
application might be unable to run in both config-
urations on different nodes or on different MPI com-
municators. This limits analysis capability, requires
frequent recompilation, and increases user errors re-
sulting from accidentally using the wrong compiled
version. The batch queues’ length exacerbates the is-
sue, sometimes requiring days between compiling an
application and actually running it. Every compat-
ibility that must be maintained by hand is another
opportunity for mistakes, some of which the user
might not realize prior to publication.

Some applications create sophisticated scripts for
maintaining consistency through the compilation
and batch submission process. These scripts must be
ported to each architecture, increasing the complex-
ity both of application debugging and of reproducing
problems encountered on particular architectures.

Integration tests often must be submitted to
batch systems. If different integration tests require
that different dependencies be compiled differently,
those different versions must be built in advance
and kept straight through the test submission and
run. When many configurations are needed, the
multiple required compilations tend to take a long
time and burn through the disk quota.

Advanced Analysis
As models mature in each application area, emphasis
shifts from qualitative and subjective interpretation
of model output to quantitative analysis of accu-
racy, reliability, and parameter influence on the tar-
get quantities. Correspondingly, today’s models are
increasingly used as both forward models and as the
target of advanced analysis techniques such as sto-
chastic optimization, risk-aware decisions, and stabil-
ity analysis. The forward model must then expose an
interface for each form of modification that the anal-
ysis levels can explore. An interface requiring build-
time modification shifts an unacceptable complexity
burden to the analysis software and is algorithmically
constraining—limiting parallelism, introducing artifi-
cial bottlenecks, and preventing some algorithms.

40 January/February 2015

Scientific Software communitieS

In lieu of tractable deterministic techniques for
calibrating empirical phenomenological models,
tremendous expert time must be spent tuning
 parameters. In fields such as climate, earthquakes, and
molecular dynamics, this calibration is notoriously
sensitive to numerical methods, temporal and/or
spatial resolution, and other simulation models. Yet,
when faced with this extreme uncertainty and vola-
tility, these parameters are often hard-coded in the
source, thwarting reasonable attempts to automate
the calibration or model comparisons.

Model Coupling
Visionary scientists operating in a single domain
have produced a large fraction of successful scientific
software. Such visionaries predicted many impor-
tant model configurations and analysis types, and
the community has been largely content to explore
within their fuzzy scopes. Each package has been
king of its own environment and thus choices were
often made without concern for interoperability
or impact on other packages. However, the gaping
holes in our scientific understanding and engineer-
ing capability lie increasingly in the gaps not covered
by these mature packages.

Rarely do multiple models operate on identi-
cal spatial and temporal scales with similar model
and parameter uncertainties. Thus, coupling often
requires grappling with multiscale phenomena and
high-variance statistics, each an algorithmic chal-
lenge in its own right. When components make
excessive assumptions about their environment,
attempts to couple are either written off or algo-
rithmic quality falls by the wayside, leading to nom-
inally coupled simulations that are unreliable at best
and, in most cases, effectively nonconvergent.

The most powerful and pragmatic software ap-
proach we know of is to formulate models as libraries
with a clean interface hierarchy that lets the external
client compose the key capabilities into a coupled
model without the higher-level parts that would algo-
rithmically constrain a coupled model. This approach
has repeatedly demonstrated its effectiveness outside
of scientific computing in areas traditionally domi-
nated by standalone applications, such as compilers
(LLVM), Web browsers (KHTML/WebKit), and
SQL databases (SQLite). Although process isolation
can be useful for security (as in qmail and postfix), re-
liability (Web browser tabs), and distribution (remote
databases), it’s easier to add isolation upon library
interfaces than to add composition/embedding atop
process separation, especially in HPC environments
for which oversubscription is usually catastrophic.

Provenance and Usability
Reproducibility and provenance are perpetual
challenges of computational science that become
more acute as the software stack deepens and a
larger number of models, each of greater complex-
ity, are coupled. How can we capture the state of
all configuration knobs so that a computational
experiment can be reproduced? Compare the com-
plexity of a single configuration file to be read at
run-time with that of a heterogeneous configura-
tion consisting of multiple build systems, files
passed from earlier stages of computation, and
run-time configuration. Provenance is simplified if
we use each package without modification, com-
pile them in a standard way, and control them en-
tirely via run-time options. This implies that any
libraries the application uses (transitively) must
be responsible libraries that adhere to the prin-
ciples discussed here and elsewhere.2 For both
maintenance and provenance reasons, custom
components needed for a given computational
experiment are better placed in version-controlled
plug-ins instead of being implemented by modify-
ing upstream sources. To support a coherent top-
level specification in a system with build-time or
source-level choices, those configuration options
must be plumbed through all the intermediate lev-
els, often resulting in another layer of “workflow”
scripts and bloated, brittle high-level interfaces.

Big Data
Workflows that involve multiple executables usu-
ally pass information through the file system. It takes
about an hour to read or write the contents of volatile
memory to global storage on today’s top machines,
assuming that peak I/O bandwidth is reached. The
largest allocations (as in INCITE or ALCC awards)
are on the order of tens of millions of core hours,
which means the entire annual compute budget can
be burned in a few reads and writes. Global storage as
an algorithmic mechanism is dead: where out-of-core
algorithms were used in the past, today’s scientists
can simply run on more cores, up to the entire ma-
chine; but, if the entire machine doesn’t have enough
storage, the allocation simply doesn’t have the budget
to run an out-of-core algorithm.

If a different application or different applica-
tion version must be used for the simulation/analy-
sis pipeline’s next stage, data must be dumped to the
file system. In situ analysis provides an excellent op-
portunity to increase efficiency by reducing depen-
dence on the file system, but it’s viable only if the
more varied analysis workflow can be performed in

www.computer.org/cise 41

the same application. Interfaces for exchanging data
in-memory between different software components
could be the same as those used to describe data sets
for parallel IO.

Some of today’s simulations support a large and
diverse community that analyzes the output. Transi-
tioning to in situ analysis will require dynamic and
extensive analysis interfaces to support varied analy-
sis demands. Unlike most parts of mature simula-
tion software, the analysis code often changes with
each question a scientist asks and thus is highly
volatile and doesn’t benefit from the same amount
of testing.

Nested Dependencies
Some library dependencies are indirect (transitive)
via some intermediate interface that the applica-
tion actually intends to depend on. A key soft-
ware engineering principle is that of encapsulation,
 allowing clients to depend only on interfaces that
it uses directly, rather than on implementation
concerns. Encapsulation isn’t possible if a transi-
tive dependency must be reconfigured for each use
case, and combining uses into one application can
cause conflicts. The build system for any “library”
that requires use-specific configuration effectively
becomes a public API that top-level components
must interact with, even when the library is used
only indirectly.

A single library can be used by multiple com-
ponents in the same executable. This might be rare
when a library is first being developed, but it’s com-
mon among popular and versatile libraries. If a li-
brary has mutually incompatible configurations, the
entire executable can use only one version unless the
library developer has taken great care (this is often
impractical, especially when linking statically—an
unfortunate necessity on many HPC architectures).
Even in the best case, needing to use multiple ver-
sions complicates the installation and debugging
process, invariably leading to a degraded user expe-
rience and increased support workload for library
maintainers.

User Modifications
Software project fragmentation is notoriously expen-
sive and should be avoided when possible. Maintain-
ing local modifications with no plan for upstreaming
is a recipe for divergent design—technical debt that
must be paid off to combine the features developed in
each fork. Fragmentation is especially toxic for librar-
ies that might be used by multiple higher-level pack-
ages combined by the overall experiment.

Packaging and Distribution
Software developers often underestimate the chal-
lenge of installing their own packages. From the
user experience perspective, it hardly matters if
an installation failure was caused by a user’s bro-
ken environment (a circumstance all too familiar
to maintainers of popular packages). Upgrading
an OS can break existing package installs if the
underlying system libraries change. The most reli-
able way to distribute packages that will always be
in sync with the OS is to have them packaged by
many common OSs, such as Debian APT, RedHat
RPM, MacPorts, and so on. Configure-time op-
tions are package distribution’s bane because each
variant must be named and conflicts between the
variants resolved. Packagers for binary distributions
(which are most convenient for users) are justifi-
ably paranoid about the binary interface and hence
will be reluctant to package software with frag-
mented configuration options.

implementation and Recommendations
To manage these workflow challenges, application
developers must think more like library developers2

and control namespaces; avoid global state; relinquish
top-level control; control the parallelism’s scope; local-
ize memory allocation; localize complexity so that it
doesn’t “bubble up” to the top level; and pay atten-
tion to the completeness, generality, stability, and ex-
tensibility of all public interfaces. Our suggestions are
shaped by experience developing and supporting the
Portable Extensible Toolkit for Scientific computa-
tion (PETSc)3,4 as well as other packages, from low-
level libraries to end-user applications. Developers
have implemented similar ideas for extensibility and
run-time configuration in applications such as Mul-
tiphysics Object-Oriented Simulation Environment
(MOOSE; http://mooseframework.org) and PyLith
(http://geodynamics.org/cig/software/pylith).

Resource Allocation
To localize configuration, allocating resources such
as memory should be done locally, with reference
counting when appropriate. Contrary to urban leg-
end, static memory allocation offers no tangible per-
formance advantage (so long as dynamic allocations
are amortized) and unavoidably ties the workflow
into the build system while committing the sin of
needless global variables. Different malloc imple-
mentations have varying performance, especially in
multithreaded scenarios. If necessary, fast implemen-
tations like TCMalloc (http://goog-perftools.source-
forge.net/doc/tcmalloc.html) can be recommended,

42 January/February 2015

Scientific Software communitieS

but it’s better to contain this complexity in favor
of good performance with any malloc. Performant
allocation can be achieved by associating memory
pools or work arrays with algorithm objects, so that
malloc isn’t called in inner loops.

Plug-ins
Source-level dependencies on an implementation
(such as directly instantiating a derived class)
rather than a generic interface cause choices from
deep in the stack to “bubble up” via brittle inter-
faces that plumb the user’s configuration to the
appropriate component. Plug-ins provide a strong
way to identify interfaces that can be extended
by users and distributed separately from the core
package. For example, every class in PETSc has
a plug-in architecture, from base linear algebra
components to preconditioners, nonlinear solv-
ers, and adaptive controllers for time integration.
A plug-in can provide any of these components,
which will be indistinguishable from a PETSc na-
tive component. Plug-ins consist of a registration
function called via dlopen()—a creation func-
tion called when the plug-in is activated (such as
instantiating an object implemented in the plug-
in)—and any supporting functions that will be
exposed via the object’s methods. Historically,
Fortran’s type system and inability to store func-
tion pointers have conspired against plug-in im-
plementations, but the new standard provides the
necessary tools.

Plug-ins also provide a mechanism to invert de-
pendencies without creating dependency loops. For
example, suppose libB depends on libA, but we
would like to provide an optional implementation
of an interface in libA that depends on libB. We
can’t put it in libA because this would make a cyclic
dependency, but it’s unrelated to libB’s public inter-
face, so it doesn’t belong there either. We can create
libA-plugin that depends on both libA and libB,
registering itself as a plug-in of libA and calling
into libB in its implementation. Plug-ins can also
be used for optional interfaces to third-party librar-
ies. It’s best to have plug-in search paths from which
plug-ins are loaded by dlopen, so that they can be
distributed independently from the base system
without requiring relinking. Shared libraries should
be versioned (-soname on most POSIX systems, and
-current_version and -compatibility_version
on OSX) to make this distribution more reliable and
to assist the layers built on top. (More information
on shared library versioning and controlling symbol
visibility is available elsewhere.5)

Although distribution via shared libraries is
convenient for users and packagers, some important
HPC execution environments don’t support shared
libraries. If you must use such antiproductive en-
vironments, the plug-in structure can be preserved,
but the build system must ultimately be able to link
everything statically. For an application, this typi-
cally means that plug-in source trees are placed in
a location that the build system picks up; code to
call the registration function is then generated and
everything is linked together. For a library, plug-ins
either must be compiled into a single static archive
or the user must explicitly link the plug-ins (in the
correct order). The linking interface is a public in-
terface, so changing it shouldn’t be taken lightly. The
library can either distribute a tool that determines
which plug-ins are available and generates a suitable
link line, or it can create a static archive contain-
ing all plug-ins. Unfortunately, the pkg-config tool
is not sufficient to manage multiple configurations
and optional dependencies, so many libraries must
have their own executable. Wrapper compilers are
exclusive (only one library can use a wrapper com-
piler), and thus they should be avoided.

Inversion of Control, Recursive Configuration,
and the Options Database
Software libraries’ primary purpose is to contain
complexity. Public interfaces should be as simple as
possible (but no simpler), meaning that transitive
complexity must not be a mandatory part of the pub-
lic interface. Furthermore, extensible components
aren’t known at compile-time (indeed, they might not
have been written yet) and thus would be rendered
useless if implementation complexity leaked into the
public interface. It should be possible to instantiate
the same plug-in (implementation unknown to client
code) at different locations in the object graph, each
with its own configuration. Because the client doesn’t
know how to configure the object, some inversion of
control6 is necessary. PETSc’s approach is similar to
service locator,6 but new projects should consider sev-
eral variations. In PETSc, multiple objects’ instances
are distinguished by a prefix in the options database,
allowing conflict-free, run-time configuration. For
example, a multiphysics solver might use a block de-
composition and geometric-algebraic multigrid with
choices and diagnostics for each block and at each
level of one or more multigrid solves, each instance
of which we distinguish by prefix. The basic principle
is to choose good defaults and defer precise configu-
ration to the run-time interface. Some packages take
dynamic extensibility further by embedding a Turing-

www.computer.org/cise 43

complete programming language such as Lua, JavaS-
cript, or Scheme.

PETSc also acknowledges that some users take
active control over method configuration, adapting
it in response to the physical regime or other fac-
tors. Such control is more naturally implemented
and debugged with an object-based run-time inter-
face; thus, any run-time configuration exposed via
the options database is also exposed via the object-
oriented interface. The most challenging compro-
mise in this scenario occurs when an algorithm
adaptively configures recursive levels, but the cli-
ent wants to actively configure portions. Solutions
include fine-grained interfaces for “forcing” (in the
lazy functional programming sense) certain parts of
the setup and callbacks to configure portions when
reached. Neither is completely satisfactory.

Object-Oriented Design
We turn now to some contentious issues in object-
oriented with which we’re less than enamored with
the oft-repeated recommendations.

Partial implementation. Some people believe that all
errors should be compile-time errors; thus, any in-
compatibility must be visible to the compiler. Unfor-
tunately, this approach leads to extremely complicated
and fragile type hierarchies. For example, a Matrix is
a linear transformation on finite-dimensional vector
spaces. Should a Matrix have computable entries?
Should the diagonal be extractable? Can the trans-
pose be applied? Are Neumann subproblems available
(that is, matrices with certain properties whose sum
equals the original matrix)?

Although matrix entries can be computed in
principle, the space and time complexity can be so
unaffordable as to render that representation useless.
Meanwhile, other operations that are unaffordable
for explicitly stored matrices might be fast for matri-
ces with special structure. Different preconditioners
(which might reside in plug-ins) can require different
functionality from the Matrix. Any type system that
can guarantee full implementation of a given Matrix
interface will end up conflating the desired generic
interface with implementation-specific semantics,
especially when the Matrix type is also extensible,
leading to undesirable dependencies and leakage of
transitive complexity. Moreover, the “not implement-
ed” run-time error is likely to be more understand-
able than a type mismatch error.

changing the run-time implementation. PETSc
has found it useful for major objects to change

 implementations—such as from multigrid to a
direct solve—at run-time. One object can have
many dependencies/references and be referenced
by many other objects. If the implementation can
be changed only at object creation, the user ends
up holding factory objects (or the equivalent)
solely to recreate “similar” objects. Someone must
be responsible for keeping track of these factory
objects and rewiring the dependencies when re-
placing an existing object. This turns out to be
messy and error-prone; PETSc thus chose to ab-
sorb the “factory” functionality into the object
itself, allowing reconfiguration of any sort, at any
time. This also removes the need for special inter-
faces to pass a factory object around to all compo-
nents that should have a say in that new object’s
configuration.

controlling the binary interface. Time spent recom-
piling code is nothing but wasted productivity.
Implementation concerns such as private variables
and new (virtual) methods should never require
client code recompilation. PETSc uses a delegator
pattern (also known as a “pointer to implemen-
tation”7 or bridge8 pattern) to keep such imple-
mentation concerns out of the binary interface,
thus minimizing recompilation and enabling
binary distribution of shared library5 upgrades.
This is idiomatic in C, where “objects” are typi-
cally implemented via opaque pointers, but often
under-utilized in C++ because it entails a bit more
boilerplate than the native object model that re-
veals the classes’ private contents. Delegator in-
curs an additional static function call, but tests
with classic virtual methods and delegator indi-
cate that the main function call overhead (several
cycles) comes from the indirect call (virtual func-
tion) rather than the static call to the delegator,
thus the incremental cost of using the delegator
pattern is usually less than two cycles. An ancil-
lary benefit of the delegator pattern is that there’s
a unique place to set a debugging breakpoint for
each function (rather than having to choose the
correct virtual function) and a common place for
input validation.

It’s increasingly popular to expose librar-
ies through more dynamic environments such as
Python or Julia. Because different languages have
different type systems, it’s easier and more reliable
to develop language bindings with a simple type
system and stable binary interface. Naturally, stat-
ic methods and opaque pointers are simpler than
struct definitions and template-based systems.

44 January/February 2015

Scientific Software communitieS

Just-in-Time Compilation
With fine-grained composition (such as that in ma-
terial models and Riemann solvers) and fusion of
memory-intensive operations, the number of pos-
sible compositions grows combinatorially; in any
specific run, however, only a few are important.
Precompiling and dispatching (via C++ templates
or other inlining techniques) every combination
leads to large compile times, bloated executables,
confusing debugging, and compromises about
which combinations will be made available.

Although a dynamic interface is far more main-
tainable, the performance overhead is unacceptable
for certain applications. When the interface granu-
larity can’t be increased to amortize the overhead of
dynamicism, just-in-time (JIT) compilation is an
attractive approach to preserve strong encapsulation
and debuggability. We expect technologies such as
LLVM and OpenCL to become ubiquitous, allow-
ing judicious use of JIT for dynamic kernel fusion
and plug-in-style packaging of fine-grained compo-
nents without sacrificing performance. This might
involve tighter integration with languages like Julia
and the Numba package for Python, or language
extensions to support JIT within traditionally com-
piled languages.

Upstreaming, Distribution, and
Community Building
To provide attractive alternatives to forking, main-
tainers must be diligent in creating a welcoming
environment for upstream contributions. The
maintainers should nurture a community that
can review contributions, advise about new de-
velopment approaches, and test new features,
while recognizing all forms of contribution. In a
transparent community, paper reviewers can eas-
ily determine who did the work to implement a
new feature; thus any attempt to “scoop” a result
based on new capability is easily spotted. We be-
lieve that scooping is a purely social problem and
that the secrecy inherent in any technical solution
is so costly as to rarely be justified. Several major
tech companies have famously underestimated this
cost when forking open source packages such as
the Linux kernel for internal use, later repaying
the technical debt to reintegrate with upstream. In
science, it’s exceedingly difficult to obtain funding
to pay off the technical debt incurred by forking,
leading to a wasteland of abandoned forks. This is
contrary to the interests of stakeholders, ranging
from the program managers and taxpayers to other
scientists in the field.

In addition to community building,9 develop-
ers should provide versatile extension points so that
contributions can be made without compromising
existing functionality and without degrading package
maintainability. Developers should see this as a techni-
cal prerequisite for maintainable extension rather than
private forking. Such extensions must be accompanied
by tests lest they break as interfaces evolve. It’s far eas-
ier to write tests for dynamic configuration sets than
to add new build-time configurations. Additionally,
compilers and static analysis tools can check combi-
nations that are not actively used. In contrast, condi-
tional compilation (#ifdef) is not checked, invariably
leading to more frequent breakage by other develop-
ers (in the test suite, if covered; otherwise the breakage
will be found by users and other developers).

Configuration and environment design decisions
made by developers of today’s scientific librar-

ies and applications are often disproportionately
harmful to usability, productivity, and capability. In
such cases, the most effective way to increase scien-
tific or engineering value is to design and refactor
software using best practices for extensible library
 development.

acknowledgments
Jed Brown and Barry F. Smith were supported by the US
Department of Energy, Office of Science, Advanced Scientif-
ic Computing Research (contract DE-AC02-06CH11357).
Matthew G. Knepley was partially support by the US DOE
(contract DE-AC02-06CH11357) and the US National
Science Foundation (grant OCI-1147680).

This article was created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”).
Argonne, a US DOE Office of Science laboratory, is
operated under contract DE-AC02-06CH11357. The
US Government retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the
Government.

References
1. D.E. Keyes et al., “Multiphysics Simulations: Chal-

lenges and Opportunities,” Int’l J. High Performance
Computing Applications, vol. 27, no. 1, 2013, pp. 4–83.

2. W.D. Gropp, “Exploiting Existing Software in Librar-
ies: Successes, Failures, and Reasons Why,” Proc. SIAM
Workshop Object-Oriented Methods for Interoperable
Scientific and Eng. Computing, 1999, pp. 21–29.

www.computer.org/cise 45

3. S. Balay et al., PETSc Users Manual, tech. report
ANL-95/11, revision 3.5, Argonne Nat’l Lab., 2014.

4. S. Balay et al., PETSc Developers Manual, tech. re-
port, Argonne Nat’l Lab., 2011.

5. U. Drepper, “How to Write Shared Libraries,
2002–2011,” Dec. 2011; www.akkadia.org/drepper/
dsohowto.pdf.

6. M. Fowler, “Inversion of Control Containers and the
Dependency Injection Pattern,” 23 Jan. 2004; http://
martinfowler.com/articles/injection.html.

7. H. Sutter, Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Solutions, Addison-
Wesley, 2000.

8. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Pearson Education, 1994.

9. M.J. Turk, “How to Scale a Code in the Human
Dimension,” arXiv preprint arXiv:1301.7064, 2013.

Jed Brown is an assistant computational mathematician
at Argonne National Laboratory and an assistant professor
adjoint at the University of Colorado Boulder. His research
interests include scalable solvers for implicit multiphysics,
high-order partial differential equation (PDE) discretiza-
tion in complex geometry, compatible discretizations for
heterogeneous flows, and PDE-constrained optimiza-
tion. Brown has a PhD in glaciology from ETH Zürich.
He’s a member of SIAM, the American Geophysical
Union (AGU), ACM Special Interest Group on High-
Performance Computing (SIGHPC), and Consortium for
Mathematics in the Geosciences (CMG++). He received
the 2014 SIAM Activity Group on Supercomputing
 Junior Scientist Prize and the 2014 IEEE Technical Com-
mittee on Scalable Computing Young Achievers Award.
Contact him at jedbrown@mcs.anl.gov.

Matthew G. Knepley is a senior research associate at the
Computation Institute at the University of Chicago. His
research interests focus on scientific computation, including
fast methods, parallel computing, software development,
numerical analysis, and multicore architectures. He’s an
author of Argonne National Laboratory’s Portable Exten-
sible Toolkit for Scientific computation (PETSc) library for
scientific computing and principal designer of the PyLith
library for solving dynamic and quasi-static tectonic defor-
mation problems. Knepley has a PhD in computer science
from Purdue University, and won the R&D 100 Award in
2009 as part of the PETSc team. Contact him at knepley@
ci.uchicago.edu.

Barry F. Smith is a senior computational mathemati-
cian at Argonne National Laboratory’s Mathematics
and Computer Science Division. His research interests

 include numerical algorithms for linear algebra and par-
tial differential equations, and software for high-perfor-
mance computing. He’s a developer of PETSc. Smith has
a PhD in applied mathematics from New York Univer-
sity’s Courant Institute of Mathematical Sciences, and is
a fellow of SIAM and a member of ACM. He was co-
recipient (with Lois Curfman McInnes) of the US De-
partment of Energy’s 2011 Ernest Lawrence Award for
outstanding contributions in research and development.
Contact him at bsmith@mcs.anl.gov.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

Listen to DiomiDis spineLLis
“Tools of the Trade” Podcast

www.computer.org/toolsofthetrade

