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Abstract

In this paper we describe a computational methodology that is specifically designed for studying three-dimensional geodynamic
processes governed by heterogeneous visco-plastic Stokes flow. The method employs a hybrid spatial discretization consisting of
a Q2-Pdisc

1 mixed finite element formulation for the Stokes problem, coupled to a material-point formulation which is used for
representing material state and history-dependent variables. The applicability and practicality of this methodology is realized
through the development of an efficient, scalable and robust variable viscosity Stokes preconditioner. In this work, these objectives
are achieved through exploiting matrix-free operators and a geometric multigrid preconditioner employing hybrid coarse level
operators, Chebyshev smoothers and hybrid Krylov coarse level solvers. The robustness and parallel efficiency of this strategy
is demonstrated using an idealized geodynamic model. Lastly, we apply the new methodology to study geodynamic models of
continental rifting and break-up in order to understand the diverse range of passive continental margins we observe on Earth today.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Computational geodynamics

Using a wide range of naturally-available data and observations, geology, geophysics and geochemistry aim to
develop an integrative understanding of dynamical processes associated with Earth’s tectonic history. Understanding
the Earth’s evolution is essential to: (i) explain the formation of both small scale (e.g. fold and thrust belts in a single
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mountain range) and large scale structures (e.g. geometry of plate boundaries and morphology of subducting plates);
(ii) be able to make reliable estimates of past vertical displacement and heat flow, thereby providing better assessment
for mining and oil industry; (iii) be able to make reliable estimates of the present day state of stress thereby providing
better risk assessment for geo-hazards (e.g. earthquakes, tsunami) and underground storage (e.g. CO2, nuclear waste,
clean drinking water).

The interpretation of observations obtained from rocks of diverse ages located at the surface of the present day Earth
(geology, geochemistry), combined with even a detailed image of the present day structure provide insufficient data to
fully constrain the spatio-retro-temporal evolution of the Earth. Unraveling the mechanisms leading to the formation
of the structures we observe today requires a forward model which describes the evolution of tectonic processes.

Complementary to data-driven fields of Earth science is the field of geodynamics, in which physics-based (contin-
uum) representations describing the temporal evolution of deforming rocks are employed. Such geodynamic forward
models are then steered through a careful prescription of constitutive relationships, boundary conditions and initial
conditions, each constrained by natural observations and laboratory experiments. In this framework, geodynamic
model validation is obtained by comparing present day observations with the output of forward simulations, thereby
facilitating a means to construct a thermo-mechanically consistent description of the Earth’s tectonic history.

1.2. Geodynamic modeling challenges

The structures we observe in the present day Earth result from large-deformation processes which span million-
year time scales. Whilst rocks behave elastically on short time scales (e.g. seconds to kyr), over periods of 105–109

years, the dominant mode of deformation exhibited by rocks is ductile. Consequently, the evolution of rocks in
geodynamic contexts is frequently described by the equations of stationary Stokes flow, which model the dynamics of
an incompressible, very viscous, creeping fluid.

From the standpoint of developing computational models of geological processes, a number of modeling
requirements (MR) must be satisfied. Numerical methods must be able to represent and track compositionally and
rheologically distinct materials which possess highly nonlinear, history-dependent constitutive behavior (MR1). The
capacity to continue to track the deformation of materials post-failure is an essential requirement as most natural
structures result from a multitude of deformation phases (MR2). The inherent complexity and three-dimensionality of
most natural structures also mandates that the methodology employed must be extensible to three spatial dimensions
(MR3). In addition, the inclusion of a deformable free-surface, or a dynamic surface governed by a landscape evolution
model is also an essential physical component in both regional and global scale geodynamic models e.g. [1–5] (MR4).
At all scales, the dynamics of the surface is strong influenced by the rheology of the lithosphere (40–200 km thick)
and crustal layers (5–50 km thick). High spatial resolution (MR5) is necessary to numerically resolve these layers and
the brittle shear zones that develop within them.

The inclusion of compositionally distinct materials, together with the nonlinearities (which manifest as an effective
viscosity) result in a highly spatially heterogeneous coefficient within the elliptic operator associated with the Stokes
equations. Within geodynamic applications, the variations of the effective viscosity may be discontinuous and exhibit
viscosity jumps on the order of 109 Pa s. The solver for the discrete Stokes system must be extremely robust (MR6)
to efficiently handle the heterogeneous viscosity structures. Since the CPU time associated with the solution of
the nonlinear Stokes system represents a majority (∼90%) of the overall runtime of computational geodynamics
applications, the performance of the Stokes solver is the leading bottleneck for scientific throughput and furthering
our understanding of geological processes.

1.3. Previous work

To facilitate large deformation modeling of distinct materials in three spatial dimensions (MR1, MR2, MR3),
particle-mesh methods derived from the Marker-And-Cell (MAC) scheme of Harlow and Welch [6] and the Material
Point Method (MPM) [7] have been exploited by the geodynamics community since the late 1980s, e.g. [8–23].

The geometric flexibility associated with finite element methods and the natural manner to impose stress-free
boundary conditions make this spatial discretization suitable to address MR3 and MR4. Whilst internal structures
within the Earth may be subject to large strains, topographic variations are typically <10 km. These small variations
(compared to the length scale of the domain) enable boundary fitted, structured hexahedral meshes to be utilized for
both regional and global scale (e.g. via a cubed sphere) models.
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High spatial resolution (MR5) has motivated the use of low-order mixed finite elements, such as the inf–sup
violating Q1–P0 element [11,15,19,22], or the stabilized Q1–Q1 element [24–26]. Both element types may exhibit
pressure artifacts due the unstable “checker-board mode” (Q1–P0 [27]), or due to the artificial compressibility
introduced by the polynomial projection stabilization. The inf–sup stable, Q2–Pdisc

1 element has been applied to 3D
models of crustal deformation and subduction [23,20]. The element-wise incompressibility provided by this mixed
element rendered it applicable for flow problems driven by Dirichlet boundary conditions, or by purely buoyancy
variations. A major downside of this mixed element in 3D is that the stencil of the Q2 element has, on average, 3× 64
non-zeros (with a maximum of 3 × 125), in contrast to the stencil of a Q1 element which only has 3 × 27 non-zero
entries. Consequently, compared to a given Q1 element resolution, both the memory usage and solution time will
significantly increase when Q2 elements are used.

To address MR6, a large number of practitioners have simply advocated exploiting parallel (multi-threaded or
distributed memory) sparse direct solvers [11,28,22,19]. Although the performance of direct solvers is stable when
switching from Q1 to Q2 (because the vertex separators remain the same size for the same number of degrees of free-
dom, [29]), the lack of algorithmic scalability places strict limitations on the spatial resolution possible. To circumvent
this limitation, algorithmically scalable approaches utilizing iterative Krylov solvers with multilevel preconditioners
have been explored e.g. [30,31,26,32]. In [23], we found that a Galerkin geometric multigrid preconditioner with
heavy smoothers (GMRES/ILU(0)) was extremely reliable and robust for a wide range of geodynamic applications
with highly heterogeneous viscosity structures.

1.4. Present work

In this work, we describe a computational methodology which aims to simultaneously satisfy all of the geodynamic
modeling requirements MR1–MR6. We have made a number of fundamental design choices which result in a fast,
highly scalable and robust Q2–Pdisc

1 finite element implementation that is suitable for solving a wide range of
geodynamic applications. Specifically these include: (i) utilizing an inf–sup stable mixed finite element (with an
“unmapped” pressure space) which provides a reliable velocity and pressure solution; (ii) making extensive use of
matrix-free operators which drastically reduces the memory requirements, improves efficiency, and improves the
parallel scalability of the sparse matrix–vector product; (iii) deferring a wide range of choices associated with the
solver configuration to run-time.

1.5. Outline

The structure of this paper is as follows: Section 2 outlines the underlying description of the viscous flow problem
characterizing long time-scale geological processes; Section 3 describes the hybrid spatial discretization used for
studying large deformation creeping flow; Section 4 describes the formulation of the nonlinear solver used; Section 5
presents the preconditioning strategies utilized to solve the Stokes problem; Section 6 outlines the parallel strategy
adopted; Section 7 describes how the finite element matrix-free operators are applied and demonstrates their parallel
scalability; Section 8 discusses the robustness and parallel scalability of the proposed Stokes solver; and lastly,
Section 9 demonstrates the overall methodology by examining a three-dimensional model of continental rifting and
break-up.

2. Governing equations

The conservation of momentum for a creeping fluid with an isotropic viscosity in a domain Ω with boundary ∂Ω
is given by:

2ηε̇i j (u)

, j
− p,i = fi , (1)

where u, p are the fluid velocity and pressure, η is the (nonlinear) effective shear viscosity, fi is the body force and
the strain-rate operator ε̇i j is given by

ε̇i j (u) = 1
2


ui, j + u j,i


. (2)
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We assume incompressibility (simplified mass conservation):

−uk,k = 0. (3)

The system equations (1) and (3) are closed with the following boundary conditions

ui = ūi x ∈ ΓD (4)

σi j n j = t̄i x ∈ ΓN , (5)

where n j is the outward pointing normal to the boundary ∂Ω , ΓD,ΓN denote the regions along the boundary ∂Ω where
the Dirichlet and Neumann boundary conditions are applied respectively, subject to the restrictions that ΓD ∩ΓN = ∅

and ΓD ∪ ΓN = ∂Ω . For the isotropic media we consider, the total stress σi j is given by

σi j = τi j − δi j p, where τi j = 2ηε̇i j . (6)

The rheology of rocks over long time scales is frequently debated and revised in Earth sciences. Undoubtedly, the
choice depends on the length scale (e.g. regional versus global) and the time scale (e.g. seismic versus Myr) consid-
ered. Many constitutive models exist for the effective viscous strength (η) of rocks over long term tectonics time scales
(Myr→ Gyr). They all assume that the viscosity depends, to first order, on chemical composition, temperature, pres-
sure, strain-rate and path dependence. Here, we have chosen to approximate the thermal activated creep mechanism
defining the viscous strength of rock by the Frank–Kamenetskii flow rule

η′ = η0 exp(−θT ), (7)

where the parameters η0, θ account for the local chemical composition of the rock and T is the temperature. Pressure
and strain-rate dependence are introduced by limiting the effective viscosity so that stresses in the model do not exceed
the Drucker–Prager yield stress

τy = min


p sin φ(ε p)+ C0 cos φ(ε p), τmms

, (8)

which is limited by a maximum Mises stress, τmms. The cohesion C0 is regarded to be constant, however the internal
friction angle φ is assumed to decrease as a function of the accumulated plastic strain ε p according to

φ(ε p) = max


φ∞, φ0 −
ε p (φ0 − φ∞)

ε
p
∞


. (9)

Eq. (9) defines an empirical softening relation which reduces the friction angle linearly with accumulated plastic strain
similar to that of Lavier et al. [33]. Here φ0 defines the initial friction angle. ε p

∞ represents the measure of plastic strain
after which complete softening is achieved and internal friction angle reaches φ∞. Plastic strain represents an inte-
grated, tensorial invariant measure of the deformation which has occurred due to plastic yielding. Thus, the quantity
ε p can be regarded as a simplified measure of material damage. The evolution of plastic strain is given by;

Dε p

Dt
=


ε̇ I I , if η′ > τy/2ε̇ I I
0, otherwise,

(10)

where ε̇ I I =


1
2 ε̇i j ε̇i j

1/2
. Note that the evolution of Eq. (10) only occurs when the material undergoes yielding [34].

The effective viscosity η, which accounts for both the parameterized creeping of viscous rocks and brittle behavior, is
given by

η = min

η′,

τy

2ε̇ I I


. (11)

The forcing term in the momentum equation is typically associated with buoyancy variations due to infinitesimal
changes in density associated with thermal contraction/expansion (Boussinesq approximation), or compositional
variations between different rock types. Thus, in general, here we will consider a forcing term of the form

f = ρ0

1− α(T − T0)+ β(p − p0)


ĝ, (12)
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where ρ0 is the density defined by the composition of the rock as measured at a reference temperature and pressure
T0, p0. The gravity vector is denoted by ĝ and α, β are the coefficients of thermal expansivity and adiabatic
compressibility respectively.

3. Spatial discretization

To facilitate large deformation simulations, we adopt a hybrid spatial discretization which couples mixed finite
elements for the flow problem (u, p), with a Lagrangian marker-based discretization to track constitutive behavior
and material properties (e.g. η, ρ). The usage of such coupled “mesh-marker” discretizations for modeling large
deformation geodynamic processes has been exploited by the Earth science community since the late 1980s. The
particular hybrid finite element, marker-and-cell discretization which we utilize is described in more detail below.
Geodynamic applications frequently utilize a nonlinear rheology which renders the viscosity as a function of velocity
u, pressure p and temperature T . In this work, we will assume that the nonlinear coupling due to the temperature
dependence is weak, and thus the explicit temperature dependence in the nonlinear equations will be removed.

Over the domain Ω , the weak form of the nonlinear Stokes problem (Eqs. (1), (3)) is stated as follows: Find
(u, p) ∈ V × Q such that

A(u, w, η(u, p))+ B(u, q)+ B(w, p) = F (w, f (u, p)) (13)

for all (w, q) ∈ V × Q, where the bilinear forms A(·, ·, ·), B(·, ·) and linear functional F (·, ·) in Eq. (13) are defined
as

A(u, w, η(u, p)) =


Ω

2η(u, p)ε̇i j (u)ε̇i j (w) dV, (14)

B(w, q) = −


Ω

q∇ · w dV, (15)

F (w, f (u, p)) = −


Ω

w · f (u, p) dV +

ΓN

w · t̄ d S. (16)

We note that the solution for the Stokes problem when employing a nonlinear rheology is potentially not in H1(Ω).
Accordingly we define the function space for velocity as V := {u : Ω → Rd , u = ū on ΓD}, where d denotes the
spatial dimension and the functions in V are assumed to possess sufficient regularity to ensure that the weak form
is well behaved. The function space for pressure used is Q = {q ∈ L2(Ω) :


Ω q dV = 0} if ΓN = ∅, otherwise

Q = L2(Ω).
In this work, we partition Ω using a structured mesh of hexahedral elements. Over each element, we employ the

mixed Q2–Pdisc
1 basis function for velocity and pressure [27]. We consider models in which the structured mesh may

be deformed, thus to preserve the order of accuracy of the Q2–Pdisc
1 discretization we define the pressure basis in

the x, y, z coordinate system, as opposed to in the “mapped” coordinate system [35,36]. The locally conservative
(element-wise) properties of this element are highly desirable as many of the processes we intend to model utilize a
free surface boundary condition (σi j n j = 0) and additionally, the dynamics are entirely driven by buoyancy variations.
For this class of problems, elements which weakly enforce the incompressibility constraint, for example the globally
conservative Q2-Q1, or the low order stabilized Q1–Q1 [24], may result in unphysical velocity and pressure fields
unless a high mesh resolution is employed [24,37].

The material properties η, ρ are defined on a set of Lagrangian markers (or material points) with coordinates xp.
The spatial discretization of an arbitrary material property ϕ is given by

ϕ(x) ≈ δ(x− xp)ϕp. (17)

Evaluation of the finite element weak form is performed using Gauss–Legendre quadrature. At the time of this eval-
uation, we require the values of all material properties at each quadrature point. We utilize an approximate local L2
projection to define all quadrature point values associated with coefficients in the Stokes problem which are repre-
sented by material points. The coefficient reconstruction employs a Q1 space, with nodal interpolants denoted via
Ni (x). This Q1 space overlaps the elements defining the Q2 space used to approximate the velocity field. The local
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reconstruction for a node i associated with the Q1 basis is defined via

ϕ̂i =


Ωi

Ni (x)ϕ(x)
Ωi

Ni (x)
≈


p

Ni (xp)ϕp
p

Ni (xp)
, (18)

where the summation over p includes all material points contained within the support Ωi of the interpolant Ni . Within
each element, the material property, denoted by ϕh(x) is defined via interpolation

ϕh(x) =


i

Ni (x)ϕ̂i . (19)

The variational statement for the discrete nonlinear Stokes problem with interpolated material properties ηh, fh can
be stated as: Find (uh, ph) ∈ V h

× Qh satisfying

Ah(uh, wh, ηh)+ B(uh, qh)+ B(wh, ph) = F h(wh, fh) (20)

for all (wh, qh) ∈ V h
× Qh where V h

∈ V , Qh
∈ Q are the discrete finite dimensional spaces and

Ah(u, w, ηh) =


Ω

2ηh ε̇i j (u)ε̇i j (w) dV, (21)

F h(w, fh) = −


Ω

w · fh dV +

ΓN

w · t̄ d S. (22)

4. Nonlinear solver

To permit the usage of Newton like methods, we express the discrete problem in Eq. (20) in defect correction form.
Given an arbitrary state variable for the velocity and pressure solution X′ = (u′, p′), the discrete nonlinear residuals
for the momentum and continuity equations will be denoted as

Fu(u′, p′) = Ah(u′, wh, ηh(u′, p′))+ B(wh, p′)− F h(wh, fh(u′, p′)) (23)

and

Fp(u′) = B(u′, qh) (24)

respectively. Newton’s method J(X′)δX = −F(X′) can be expressed as

JδX = −F→


Juu Jup
Jpu 0

 
δu
δp


= −


Fu
Fp


, (25)

where the Jacobian J is given by

Ji j =
∂Fi

∂X j
.

For linear problems, the Jacobian simplifies to

J = Jp =


A B

BT 0


, (26)

where A is the discrete gradient of the deviatoric stress tensor (see Eq. (21) for bilinear form) and B, BT are the
discrete gradient and divergence operators respectively (see Eq. (15) for bilinear form).

We solve Eq. (25) using the JFNK framework [38]. Newton iterations are guarded by a backtracking line search and
tolerances for the linear solve are adaptively set using the Eisenstat–Walker method [39,40]. To evaluate the nonlinear
residual defined in Eq. (25), the following procedure is adopted. The current state u′, p′ is used to evaluate both the
nonlinear rheology and forcing function (Eqs. (11) and (12) respectively) at each material point, defining an effective
viscosity ηp and force fp. These material point values are then projected on the quadrature points within each element
following the method described in Section 3 and defined by Eqs. (18), (19).
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5. Preconditioning

5.1. Stokes operator, J

We utilize flexible, right-preconditioned Krylov methods (e.g. FGMRES [41]; GCR [42]) to solve Eq. (25). The
Jacobian system is preconditioned using an upper block triangular preconditioner [43,44] inspired from the linear
problem defined in Eq. (26). This particular preconditioner is given by

BU =


A B
0 −S


, (27)

where S = BT A−1B is the Schur complement. The preconditioned operator JpB−1
U has minimal polynomial

(JpB−1
U − 1)2

= 0, thus a suitable Krylov method will converge in at most 2 iterations [45]. Since S is impractical
to assemble, and accurate solves involving S are prohibitively expensive, we replace the Schur complement with a
spectrally equivalent operator S∗ associated with the bilinear form

S h,∗(p, q) =


Ω

1
η̄

pq dV, (28)

where η̄ is an element-wise average of the viscosity. S∗ is block diagonal due to the discontinuous Pdisc
1 pressure space

p, q, thus (S∗)−1 can be defined element-wise. Spectral equivalence between S and S∗ for variable viscosity problems
was proven (under certain regularity conditions upon η) in Grinevich and Olshanskii [32] and has been demonstrated
to be a robust and practical choice for many geodynamic applications [31,26]. Here we further approximate (S∗)−1

via (diag(S∗))−1, which in practice proves to be as robust as the true inverse of S∗ for many geodynamic applications
employing linear rheologies e.g. [43,26]. Thus the approximate upper block triangular preconditioner is given by:

BU ≈ B∗U =


A B
0 −diag(S∗)


. (29)

When considering nonlinear problems we adopt an upper block triangular system J∗U defined from the Picard
linearization of Eqs. (23), (24). The Picard linearization results in an approximate Jacobian which is identical to the
linear Stokes problem (Eq. (26)) in which the effective viscosity is defined by evaluating Eq. (11) with the current
state variable (u′, p′). Consequently, our preconditioner for the Newton solve can be expressed as:

J∗U (u′, p′) =


A(u′, p′) B
0 −diag(S∗(u′, p′))


. (30)

Similarly to the nonlinear residual evaluation, the projected field viscosity field ηh is used to define the viscosity de-
pendent operators appearing within Eq. (30). We note that when pressure-dependent rheologies are used (e.g. Eq. (8)),
Jup ≠ B and thus J will no longer be symmetric.

5.2. Viscous block, A

Applying the action of the preconditioner y ← (J∗U )−1x within the inexact Newton framework requires that we
solve the auxiliary problem, Ay1 = x1, for y1. In this work, we consider obtaining the solution vector y1 using Krylov
methods preconditioned with multigrid. Multigrid preconditioning is an efficient technique for solving elliptic partial
differential equations (PDEs) by eliminating errors across all scales using a hierarchy of coarse meshes, or coarse
sub-spaces. Multigrid preconditioners are desirable for large scale, high resolution simulations as they can exhibit
optimal O(n) algorithmic complexity and storage.

A wide range of multigrid methods exist, ranging from stencil-based approaches on uniformly refined structured
meshes to purely algebraic methods which require only the matrix entries and non-zero structure. We will refer to
the construction of coarse level operators as being generated via: geometric coarsening if the construction process
required information from an underlying mesh; or algebraic coarsening if the construction phase only required a
matrix (non-zero entries and non-zero pattern). We summarize the spectrum of multigrid preconditioners in Fig. 1.
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Fig. 1. Schematic of a hybrid, five level multigrid hierarchy composed from different coarse operator construction techniques. When considering
problems with spatially variable coefficients, the robustness of the coarse operators will generally increase using the methods presented from left
to right. Here R21, R10 are geometric restriction operators between fine–coarse meshes, whilst Rsa

21, Rsa
10 represent restriction operators defined

via smoothed aggregation (SA) algebraic multigrid. The operators A2, A1 are constructed via re-discretizing (R) the PDE, the operator A0
is constructed via Galerkin (G) projection using R10. The operators Â1, Â0 are obtained from a Galerkin projection employing algebraically
constructed restriction operators.

Purely geometric multigrid methods utilize a hierarchy of meshes, and define coarse level operators by re-
discretizing the underlying PDEs on each level. The prolongation operator which maps field values from the coarse to
fine level will be denoted via P, whilst the restriction operator (mapping fields from fine to coarse levels) is denoted via
R. In methods employing geometric coarsening, R and P are defined by considering only the mesh geometry/topology.
In the advent of an elliptic operator with a non-constant coefficient, employing re-discretized coarse level operators
will require that a restriction operator (defined via geometric information) for the coefficient is provided. Galerkin
multigrid approaches define coarse level operators Ac via Galerkin projection, i.e. Ac = RAP. Galerkin multigrid
is regarded as using geometric coarsening as although the coarse operator construction is algebraic (i.e. employs
matrix–matrix products), the underlying operator is defined using geometric information embedded within the R and
P inter-grid transfer operators.

Elliptic operators possessing a non-constant coefficient which is highly spatially variable (smooth or rough) can
adversely effect the convergence rate of multigrid preconditioners. In general, multigrid implementations employing
re-discretized operators and interpolated coefficients will converge slower than an implementation using Galerkin
coarse level operators. Likewise, for problems characterized by coefficients with highly localized small scale
heterogeneities, purely algebraic methods are likely to yield the fastest convergence rate. There are two factors
which deter us from simply relying on algebraic multigrid methods for all our geodynamic problems: (i) they require
assembled matrices; (ii) the coarsening procedures generally possess non-scalable setup times; (iii) they have poor
heuristics for discretizations which are higher order than Q1; (iv) the cost of constructing RAP on all coarse levels
is expensive (typically consuming approximately half of the setup time). Galerkin coarse level operators also suffer
from points (i) and (iv), however the setup time required for symbolic and numerical evaluation of RAP are scalable.
Assembled matrices are memory intensive, and have performance limited by memory bandwidth. In Section 7 we
elaborate on this point further.

In this work, we advocate using a hybrid coarse operator construction which fuses re-discretized operators, Galerkin
projection and purely algebraic approaches. This idea is illustrated in Fig. 1. Through our hybrid coarse operator
construction, we are optimistically seeking to exploit the most appropriate multilevel methods with the objective of
minimizing memory and minimizing time to solution on the currently available massively parallel architectures. The
design of our geometric multigrid is flexible and permits a wide range of configurability in terms of how coarse level
operators are defined, and in terms of the smoother that can be employed on each level. Such flexibility is desirable for
the diverse range of geodynamic applications we wish to tackle—each of which possesses a very different viscosity
structure. Furthermore, to exploit the known physical characteristics of the Stokes flow problem, choices related to
the definition of the coarse level operators, smoothers and coarse level solver are deferred to run-time. We elaborate
on the flexibility of the geometric multigrid preconditioner design below.

Our geometric multigrid hierarchy is composed from structured Q2 finite element meshes. Levels within the
hierarchy are numbered 0, 1, . . . , N − 1, with the coarsest level denoted via the index 0. On each level k, the user
can select to independently coarsen the number of nodes in the structured mesh in direction ni , by an arbitrary factor
(including 1) ∆i , provided that ni −1 is exactly divisible by ∆i . The prolongation Pk+1

k from level k to level k+1 are
defined using trilinear interpolation (i.e., associated with an embedded Q1 finite element space on the nodes of the Q2
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discretization). The restriction operator is defined as Rk
k+1 = (Pk+1

k )T . Our finite element method employs Q2 spaces,
thus in the case of a constant coefficient, using a restriction and prolongation operator defined via an embedded Q1
space will degrade the rate of the residual reduction of the multigrid preconditioner. However, we argue that when
considering non-constant, non-smooth coefficients, the convergence rate will already be reduced, thus using lower
order inter-grid transfer operators is unlikely to further adversely impact the multigrid convergence.

On the finest level N−1, we define a Q1 representation of the material properties ηh using the projection described
in Section 3. The fine level viscosity is interpolated to coarser levels using Q1 interpolation. The interpolated viscosity
is then evaluated at all quadrature points associated with the mesh at each level (0 ≤ k < N − 1). On each level, the
coarse level operator Ak can be defined by re-discretizing the bilinear form for A using the interpolated viscosity field.
Re-discretized operators may optionally be defined via assembled matrices or via a matrix-free representation (see
Section 7 for more details). Additionally, if Ak+1 is defined via an assembled matrix, we also allow users to optionally
construct a Galerkin coarse level operator via Ak = Rk

k+1Ak+1Pk+1
k . This framework enables us to seamlessly blend

combinations of re-discretized (assembled or matrix-free) operators and Galerkin coarse level operators within the
same multigrid hierarchy.

We associate a preconditioned Krylov method with each level within the multigrid hierarchy. Depending on the
level index within the hierarchy, the Krylov method is configured as a smoother, or as an inexact solver (e.g. for
the coarse grid). In our current implementation, the only preconditioner available when using a matrix-free operator
is Jacobi. Throughout the remainder of this manuscript, we will utilize smoothers which consist of a fixed number
s of Chebyshev iterations (denoted Cheby(s)). Unless otherwise stated, the eigenvalue bounds used by Chebyshev
are [0.2λmax, 1.1λmax], where the estimate of the largest real eigenvalue (λmax) was determined using GMRES(5)
preconditioned with Jacobi. The spectral estimate is only performed the first time the Chebyshev smoother is executed.

Chebyshev smoothers were investigated by Adams et al. [46] and have since been demonstrated to be effective
parallel smoothers in a wide range of multigrid contexts [47–51]. In a massively parallel computing environment,
the Chebyshev smoothers possess a number of desirable characteristics; (i) the application of each iteration does not
require any global reductions to be performed; (ii) the smoothing characteristics are independent of the number of sub-
domains used. In Section 8.2 we highlight the robustness of using Chebyshev smoothers for highly variable viscosity
Stokes flow problems.

6. Parallelism

Support for all parallel linear algebra, in the form of matrices, vectors, preconditioners, Krylov methods and
nonlinear solvers is provided by PETSc [52,53].

Parallelism is achieved by spatially decomposing the structured Q2 finite element (FE) mesh containing M×N×P
elements, into structured sub-domains containing m × n × p elements. One restriction of our implementation is that
we require sub-domains to contain at least one Q2 element. The underlying mesh data structure we use is defined by
the DMDA object provided by PETSc.

Parallelism associated with material points is defined by the spatial decomposition of the FE mesh. Material points
located within a particular mesh sub-domain associated with a processor k are managed by processor k. Following
advection of all material points on a given sub-domain, a point location routine is applied. In the event that the point
location routine determines that the material point is not located on the current sub-domain, the material point is
inserted into a list Ls . The material points in Ls are sent to all neighboring mesh sub-domains, and the point location
is re-applied to the newly received material points Lr . Material points in Lr which are not contained within the current
mesh sub-domain are deleted. This simple strategy enables the communication of material points between processors
and permits them to leave the domain if any outflow boundary conditions are prescribed.

7. Matrix-free operators

Sparse matrix–vector products (SpMV) are the most performance critical operation for Krylov methods and
multigrid preconditioners with Chebyshev smoothers. Here we utilize matrix-free SpMVs for the operators A, B, BT ,
and Jp defined within the Stokes system and the upper block triangular preconditioner. Whilst mathematically
equivalent, in comparison to assembled matrices, matrix-free operators have both reduced storage requirements and
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reduced memory bandwidth requirements, thereby leading to improved speed and scalability on modern multi-core
hardware. These points are demonstrated in Section 7.1.

The general approach we adopt to efficiently evaluate the SpMV in a matrix-free manner is outlined in Algorithm 1,
cf. [54]. Note that the procedure described (i) is relevant only for the A operator (discrete stress tensor gradient),
(ii) does not include the procedure to impose Dirichlet boundary conditions and (iii) does not include function calls
to facilitate parallel computations. Operations for points (ii)–(iii) can be placed around the procedure in Algorithm 1
and were thus omitted for clarity. The SpMV for the operators B, BT , Jp can be defined in an analogous manner to
that presented in Algorithm 1.

Algorithm 1 Matrix-free SpMV for u = Av. Definitions: Ĵq denotes the Jacobian of the coordinate transformation
from physical space (x, y, z) to reference space (ξ, η, ζ ), evaluated at the qth quadrature point located at ξq , with
(reference-element) weight wq . The evaluation of basis function derivatives at quadrature points∇ξ Nq is precomputed
on the reference element for each quadrature point q , and tabulated as a matrix of dimension 3|Q| × 27 (there are 27
nodes in a Q2 element and Q is the set of 27 points in a tensor-product Gauss rule, with 3 coordinate directions in the
gradient). We note the number of flops (counting multiply-adds, FMAs) on the right.

1: procedure MATMULT MFKERNALA(T , Q, v, u)
2: u = 0
3: for all c ∈ T do
4: Get equation numbers Ec for element c
5: Get nodal coordinates xc for element c
6: Get nodal field vc ← v(Ec) for element c
7: uc ← 0
8: for all q ∈ Q do ◃ 27 points/element
9: Evaluate coordinate transformation: Ĵq ◃ 243 FMA

10: Invert transformation: |Ĵq |, Ĵ−1
q ◃ 31 FMA

11: Map gradient to physical: ∇x,q = Ĵ−1
q (∇ξ Nq)⊗ I3 ◃ 243 FMA

12: Compute velocity gradient: ∇x,qvc ◃ 243 FMA
13: Evaluate constitutive tensor: D̄q

14: ε̇q =
1
2


∇x,qvc + (∇x,qvc)

T


◃ strain-rate tensor
15: τq = D̄q ε̇q ◃ stress tensor
16: uc ← uc + (∇x,q)T wq |Ĵq |τq ◃ 243 FMA
17: end for
18: u(Ec)← u(Ec)+ uc
19: end for
20: end procedure

Performance model. To understand the performance of matrix-free operators versus assembled operators, we outline

a performance model based on flops and memory bandwidth. In Algorithm 1, we have approximately 1000 FMAs
per quadrature point. Whilst there are 27 quadrature points per element, in the asymptotic limit of increasing mesh
sizes there are only 8 unique nodes per element within a Q2 discretization, thus leading to approximately 3385 FMA
per velocity node. With sufficient cache to achieve perfect reuse of the solution vector within a “wavefront”, we need
3 doubles each for the velocity state and residual, 3 doubles for coordinates, and 27 doubles for the viscosity.
This leads to an arithmetic intensity of 34 FMA/byte. Compared with a capability of about 4 FMA/byte for modern
hardware (see Table 9 in Appendix A), the matrix-free operator is floating point-limited. Meanwhile, assembled
matrices have 375 non-zeros per corner node, 225 non-zeros per edge node, 135 non-zeros per face node, and 81 non-
zeros per interior node, leading to an average of 192 non-zeros per row, or 576 matrix entries per velocity node. With
the AIJ/CSR sparse matrix format, each entry requires one double and one int, leading to an arithmetic intensity of
1/12 FMA/byte. This performance model indicates that the performance of assembled matrices is limited by memory
bandwidth, and we indeed observe 70%–90% of STREAM Triad [55,56] on x86-64 architectures for operations such
as SpMV and triangular solves, consistent with previous studies [57–59]. Moreover, assembled matrices have vastly
higher bandwidth requirements than an equivalent matrix-free representation.
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Fig. 2. Performance of SpMV for assembled (Asmb) and matrix-free (MF) operators. Left panel shows the weak scaling for Asmb (dashed lines)
and MF operators (solid lines). The right panel shows the ratio of CPU time for Asmb/MF versus number of cores. The horizontal dashed line
indicates the crossover point where the matrix-free implementation is faster.

7.1. Performance of SpMV for Q2 operators

Here we examine the performance of our matrix-free (MF) SpMV implementation for A and compare it with an
assembled matrix format (Asmb) provided by the MPIAIJ format from PETSc. All experiments were performed on
“hexagon”, which is a Cray XE6 with 696 nodes, 2×16 AMD Interlagos chips (2.3 GHz) and 1 GB RAM/core. We
note that at the time of writing, our MF SpMV kernel has been further optimized using AVX vector intrinsics [59].

In Fig. 2 we show the weak scaling obtained using sub-domains of differing sizes ranging from 23 Q2 elements per
core, to 243 Q2 element per core. The case with 243 sub-domains could not be run with the assembled matrices as the
application required more than 1 GB/core. To obtain representative timings in these experiments, we performed a fixed
number of SpMV products such that the total execution time was approximately two minutes. The left panel shows the
relative timing (with respect to 8 cores) for each of the sub-domains we considered. For ideal weak scaling, the relative
timing should be equal to one across all core counts. The MF SpMV implementation is observed to scale poorly when
sub-domains are <83 elements in comparison to the Asmb SpMV. The Asmb SpMV achieves a very flat relative time
(≈85%–90% efficiency) with sub-domains ≥43. When sub-domains are ≥83, the MF SpMV achieves nearly optimal
weak scaling ≈99% efficiency. The efficiencies are reported in Table 1. The sub-optimal behavior observed for small
sub-domains is attributed to latency in the network on the Cray XE6. When sub-domains are large and there is more
work per core, the computation outweighs the cost associated with communication. The weak scaling of Asmb SpMV
is limited by indirect memory access and the memory bandwidth. In contrast, the MF SpMV uses only local data and
requires much less indirect memory access, thus resulting in better cache re-use.

In the right panel in Fig. 2, we report the CPU time ratio between the application time of Asmb SpMV and
MF SpMV. It is apparent that the MF SpMV outperforms the assembled SpMV when sub-domains are ≥43, with
the speedup factor being approximately 1.2. A speedup of ∼2.7 is observed when sub-domains consist of ≥83 Q2
elements. The speedup factor is observed to increase as the sub-domain size increases. When the sub-domains are
large, the speed of Asmb SpMV is entirely limited by memory bandwidth (attaining 70%–90% of STREAM Triad).
Thus improved data locality and cache re-use in the MF SpMV yield faster matrix–vector products.

In Fig. 3 we report the speedup of the MF SpMV obtained using four different meshes with the total number of
Q2 elements given by 323, 643, 1283, 3843. For each of the four meshes, we increase the number of cores and report
the speedup relative to the time obtained on 8, 64, 128, 512 cores respectively. In all experiments, we utilize all cores
available on a node. The ideal speedup is denoted via the dashed lines for each test mesh. For each mesh, we scale the
MF SpMV up to 4096 cores and obtain parallel efficiencies of 19%, 51%, 95% and 99% respectively.
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Fig. 3. Speedup (strong scaling) of the matrix-free SpMV on finite element meshes of different sizes; 323, 643, 1283, 3843. Solid lines indicate
the actual speedup obtained; the ideal speedup is denoted via dashed lines.

8. Solver performance

8.1. Problem description

A simple model configuration which can be used to measure the robustness and scalability of the Stokes precon-
ditioner for linear rheologies is one of particulate flow. Here, we consider a domain Ω ≡ [0, 1]3 filled with a fluid of
density ρb = 1 and viscosity ηb. Embedded inside Ω are nc spherical inclusions of radius rc with density ρi = 1.2 and
viscosity ηi . We will denote the viscosity ratio via ∆η = maxΩ [η(x)]/ minΩ [η(x)] = ηi/ηb. On the upper boundary
we impose σi j n j = 0 (free surface) and on all other boundaries we impose ui ni = 0 and τi j t j = 0 (free slip), where
t j is a unit vector tangential to the domain boundary. Whilst simple in design, this experiment captures the necessary
complexities required to study the dynamics of gas bubbles rising in a volcanic conduit [60], or the segregation and
transport of crystals suspended in magma during their ascent within a dyke [61].

In the following sections, for any linear system denoted via Lx = b, we will terminate the iterative sequence at
step k if ∥rk∥2 < δL

rel∥r0∥2, where rk = Lxk − b. Unless otherwise stated, all iterative methods use a zero initial
guess, thus r0 = b.

8.2. Robustness

8.2.1. Single inclusion
First we consider the sedimentation of a single inclusion (nc = 1) of radius rc = 0.25, centered at (0.5, 0.5, 0.5).

The viscosity ratio ∆η was varied to assess the robustness of the preconditioner. We explored viscosity ratios from
∆η = 1 (iso-viscous) to ∆η = 108. In each serial (single-core) experiment, we applied FGMRES to the Stokes
system in Eq. (25) with δ J

rel = 10−5. Within the block preconditioner, we used FGMRES on the A block together
with δA

rel = 10−2. The definition of the coarse level operator used on each level was varied to gauge the performance
gain arising from using a mixture of re-discretized and Galerkin operators. The smoother on each level was Cheby(4)
preconditioned with Jacobi. The coarse level solver used the sparse LU factorization package UMFPACK [62]. The
test results reported in Table 2 were performed on a single core using an Intel Xeon 2.67 GHz (Nehalem). In the
column “Operator type” we identify the coarse level operators on each level in the multigrid hierarchy (ordered from
coarse to fine) were defined. Coarse level operators defined by Galerkin projection are denoted via G, whereas levels
employing re-discretized operators defined are denoted via Ra (assembled), or R (matrix-free).
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Table 1
Weak scaling: Parallel efficiency of SpMV (u = Av) from 8 → 4096 cores. Ideal weak scaling is
represented by a parallel efficiency of 1.0.

Elements per core Elements on 4096 cores Efficiency
Asmb MF

23 323 0.32 0.21
43 643 0.90 0.51
83 1283 0.83 0.92
163 2563 0.85 0.99
243 3843 * 0.99

∗ Indicates the job required more than 1 GB RAM/core.

Table 2

Robustness of the Stokes and geometric multigrid preconditioner applied to the viscous inclusion example with nc = 1 and 323 elements. A
coarsening factor of two was employed between all mesh levels and in each i, j, k direction. Coarse level operators are identified as Galerkin (G),
re-discretized using an assembled matrix (Ra ), or re-discretized using a matrix-free representation (R).

Operator type ∆η J its. A its. Solve (s) Mem. (MB)
min/max/total

Ra , R, R, R 1 4, 6, 6 1/2/28 2.1733e+02 979
Ra , R, R, R 102 17, 13, 15 2/8/132 9.3022e+02 1250
Ra , R, R, R 104 40, 25, 26 2/14/310 2.3489e+03 1364
Ra , R, R, R 106 99, 29, 37 2/45/994 6.8718e+03 1529
Ra , R, R, R 108 89, 14, 13 2/53/1105 7.8931e+03 1529

G, Ra , R, R 1 4, 6, 6 1/2/28 2.4150e+02 951
G, Ra , R, R 102 17, 13, 14 2/6/109 8.5308e+02 1209
G, Ra , R, R 104 27, 16, 17 2/10/146 1.1232e+03 1312
G, Ra , R, R 106 38, 15, 18 2/10/159 1.2444e+03 1312
G, Ra , R, R 108 40, 11, 14 2/10/143 1.1482e+03 1312

Ra , R, R 104 27, 16, 17 2/10/146 1.1765e+03 1621

From Table 2 the benefits are immediately apparent for even a mild viscosity ratio (∆η = 104), where using
Galerkin projection on only the coarsest level yields an overall speed increase of 2.1× over three time steps. We also
note that using a Galerkin operator on only the coarsest level does not significantly increase the memory requirements.
The introduction of a single Galerkin coarse operator on the coarsest level allows us to solve problems with a viscosity
ratio between 102–108 in almost constant time.

When using the multigrid preconditioner with four levels, the coarse mesh consisted of 43 Q2 elements resulting
in element edge lengths, ∆x = 0.25 = rc. The viscosity structure obtained from interpolating the fine grid viscosity
will thus be poorly represented on the coarse mesh. From the number of iterations required to converge the viscous
block (see first three rows Table 2), it is clear that re-discretized operators using this interpolated viscosity result in
ineffective coarse grid correction. However, on the second coarsest level ∆x = 0.125 < rc, and thus a re-discretized
operator should be effective. This hypothesis was verified by performing the same experiment using three multigrid
levels (coarse mesh of 83) and re-discretized operators on each level (see final row in Table 2). With three levels,
the re-discretized coarse level operator captures the viscosity structure adequately and the iteration counts on the
Stokes system and viscous block sub-problems are significantly reduced in comparison with using four levels. From
these experiments we conclude that Galerkin coarse level operators effectively capture the length scale of the viscous
inclusion, even when these scales are smaller than the element size ∆x . Thus, if mesh coarsening is used to define the
multigrid hierarchy, whenever ∆x = 0.125 < rc, Galerkin coarse level operators should be utilized.

The residual history for the Stokes solve and viscous block solves are shown in Fig. 4 for the ∆η = 104 case.
We used a multigrid hierarchy of four levels and defined a Galerkin operator on the coarsest level. On the first time
step, residuals in v, p dominate the solution, whilst the u, w residuals are small. Note that in our model configuration,
gravity acts in the negative y-direction. Over the first 10 iterations, it is observed that the u, w, p residuals all increase
to approximately the same order of magnitude of the largest residual (v). Once all the residuals are approximately the
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Fig. 4. Convergence history of u, v, w, p residuals (colored lines) during the linear Stokes solve with ∆η = 104 over 3 time steps. The circles
plotted on top of the v momentum denote the beginning of each Stokes iteration with respect to the number of V-cycles (x-axis). Gray lines
indicate the convergence history associated with the Au = v solve performed during each application of the Stokes preconditioner, (B∗U )−1. The
pronounced jump in all residuals at 94 and 148 V-cycles corresponds to when the time step was taken. On subsequent time steps, the previous
solution to the Stokes problem is used as an initial guess. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

same order of magnitude, convergence of each independent field occurs at approximately the same rate. We also note
that the average number of iterations required to converge the viscous block is approximately constant within each
Stokes solve and over the three time steps considered.

We also examined the convergence behavior of the A solve in isolation from the full Stokes solve. We conducted
the same experiment with δA

rel = 10−8. For clarity, only the residual history is shown for the first application of the
Stokes preconditioner B∗U . In practice, we find the first application of the Stokes preconditioner to yield the most
challenging solve for A. The residual histories are shown in Fig. 5. Iteration counts are observed to depend on the
viscosity ratio, with an initially large increase in iterations required when transitioning from iso-viscous (blue line) to
a viscosity ratio of 102 (yellow line). Notably, we observe little difference in the iteration count when increasing the
viscosity ratio from 104 to 108.

8.2.2. Multiple inclusions
A more challenging problem is the case when ∆η ≫ 1 and nc > 1. The scenario of many sedimenting inclusions

is more difficult to solve using multigrid due to the increased complexity of the eigenvectors associated with the low
energy modes of the fine level operator A. To better illustrate this point, in Fig. 6 we compare the three eigenvectors
associated with the three smallest eigenvalues for a 2D viscous inclusion problem using nc = 20 with ∆η = 1 (upper
panel), and ∆η = 106 (lower panel). The presence of the viscous inclusions is clearly evident in the variable viscosity
example. For multigrid to be effective, the structure present within these low energy modes must be captured by the
coarse level operator.

We performed several serial (single-core) experiments using 323 elements with ∆η = 104, rc = 0.05 and nc = 75.
The origins of the inclusions are chosen randomly, however we ensured that the inclusions do not overlap and that
there is at least 2.1rc separation between adjacent inclusions. The instantaneous flow field and the geometry of the
inclusions is depicted in Fig. 7. FGMRES is applied to both the Stokes system and the inner viscous block, using the
stopping conditions δ J

rel = 10−5 and δA
rel = 10−2. For these serial experiments, the coarse level solver consisted of

an LU factorization. In Table 3 we summarize the solver performance obtained using different coarse level operators
and smoother combinations. In the column “Operator type” we identify how the coarse level operators within the
multigrid hierarchy were defined. Coarse level operators defined by Galerkin projection are denoted via G, whereas
levels employing re-discretized operators are denoted Ra (assembled), or R (matrix-free).
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Fig. 5. Convergence history as a function of viscosity ratio ∆η for the Au = v solve performed on the first iteration of the Stokes problem. Four
multigrid levels were used with coarse level operators given by G, Ra , R, R. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Eigenfunctions of the viscous block A for a 2D viscous inclusion problem with ∆η = 1 (upper panel) and ∆η = 104 (lower panel).

Using re-discretized coarse level operators on all levels, with a smoother defined via Cheby(10) preconditioned
with Jacobi (C10-J), utilizes the least amount of memory of all variants considered, however the solve time (Solve) is
second to last. Introducing a Galerkin operator on only the coarsest level is not observed to reduce the overall run-time.
However, using Galerkin operators on all levels proves effective in reducing the total run-time from 6453 s to 3425
s. The cost for this increased robustness is a 3.4× increase in memory. For all the C10-J experiments using Galerkin
operators, the number of iterations required to converge the Stokes problem (J its.) remains approximately constant.
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Fig. 7. Streamlines of the viscous inclusion example with nc = 75 and rc = 0.05. The streamline diameter is scaled according to the magnitude
of the fluid velocity. The viscosity ratio between the inclusions (blue spheres) and the background material is ∆η = 104.

Table 3

Performance of different smoother configurations for the sinker problem using 323 elements and with ∆η = 104, rc = 0.05 and nc = 75. Column
“Smoother G/Ra” indicates the smoother used on coarse levels which employed assembled matrices (Galerkin or re-discretized), whilst “Smoother
R” indicates the smoother used on levels employing matrix-free operators. The smoother configurations are identified as follows: Cheby(10)-Jacobi
→ C10-J, FGMRES(10)-ILU(0)→ F10-I.

Operator Smoother Smoother J its. V-cycles Solve Mem.
type G/Ra R (total) (s) (GB)

Ra , R, R, R – C10-J 78 443 6.1901e+03 1.529
G, Ra , R, R C10-J C10-J 77 466 6.4532e+03 1.580
G, G, Ra , R C10-J C10-J 74 357 4.8965e+03 1.995
G, G, G, Ra C10-J – 81 287 3.4248e+03 5.354

G, G, Ra , R F10-I C10-J 66 292 4.4428e+03 2.480
G, G, G, Ra F10-I – 90 122 3.4204e+03 9.201

The total number of V-cycles (e.g. the total number of iterations performed on the viscous block sub-problem) is seen
to decrease due to the increased robustness provided by the Galerkin coarse level operator.

To illustrate the reliability of the Chebyshev smoother, we compare the C10-J results with a more robust smoother
configuration consisting of FMGRES(10) preconditioned with ILU(0) (F10-I). F10-I is applied on all levels with
assembled operators, whilst C10-J is employed on any level using matrix-free operators. In comparison with using
C10-J on both the assembled and matrix-free operators, the introduction of an FGMRES-ILU smoother does produce
slight improvements in solve time, however at the expense of a significant memory increase.

8.3. Coarse level solver

Classic multigrid theory is based upon performing an exact solve on the coarsest level to obtain an accurate estimate
of the error. In practice however, an exact coarse level solve is not required and inexact solves can be used without
compromising the robustness, or convergence, of the multigrid preconditioner. The required accuracy of the inexact
coarse level solve is determined by the convergence rate (residual reduction factor) of the multigrid preconditioner.
For elliptic operators with highly spatially heterogeneous coefficients, the convergence rate is in general, not known
a-priori.
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Fig. 8. Iterations required to solve the Stokes problem when using an inexact coarse level solver with different stopping conditions. Terminating
the coarse level solve after a fixed number of iterations is denoted via “max. its.”, whilst terminating after a relative reduction of the residual is

indicated via δ
Ac
rel . When using a fixed number of iterations, the case ∆η = 106 the Stokes problem failed to converge in 200 iterations.

Our motivation to use inexact coarse level solvers stems from a number of factors. Unlike elliptic operators with
constant coefficients, the appropriate number of levels to be used within our geometric multigrid preconditioner
is determined by the topology and length scales associated with the coefficient structure. Continued geometric
coarsening (via re-discretized or Galerkin) of the variable viscosity viscous block operator without consideration
of the viscosity structure results in an ineffective multigrid preconditioner (as discussed in Sections 8.2.1 and 8.2.2).
This fact places an upper bound on the maximum number of levels within the geometric multigrid preconditioner and
thus will often prevent us from coarsening to a mesh with few unknowns (e.g. meshes of 43 elements), where the
problem can be efficiently solved exactly using sparse direct methods. We have experimented with using the parallel
sparse direct solvers MUMPS [63] and SuperLU Dist [64] as the coarse level solver for variable viscosity problems.
We found that even with small sub-domain (e.g. ≤43 Q2 elements→< 3000 unknowns per core), these algorithms
were not effective as a general purpose coarse level solver when using more than 512 cores as they either; (i) required
too large a setup time, (ii) required more memory than was typically available on each core (1–2 GB), or (iii) were
not stable over a wide enough range of mesh resolutions, parallel decompositions or model setups (e.g. produced
segmentation errors). These problems have resulted in us pursuing inexact coarse level solvers.

To determine the necessary accuracy of the inexact coarse level solve, we consider the inclusion test case with
nc = 1 and report the total number of iterations required to solve the linear Stokes problem when the viscosity ratio
∆η is 1, 102, 104, 106. The Stokes preconditioner is defined as in Section 8.2.1, however the LU factorization on the
coarse level is replaced with FMGRES preconditioned with Jacobi. As stopping conditions, we examine using either
(i) a fixed number of iterations (max. its.), or (ii) a relative residual reduction of δ

Ac
rel , where Ac denotes the operator

on the coarsest level. In Fig. 8 we report the results of using these different stopping conditions. For the iso-viscous
case, all stopping conditions result in convergence of the Stokes problem in at most, 6 iterations. However, for the
variable viscosity cases, the number of Stokes iterations is strongly dependent on the choice of stopping condition.
Overall, iteration counts are found to decrease as the accuracy of the coarse level solve is improved. For all cases,
using δ

Ac
rel = 10−2 results in convergence of the Stokes problem in the same number of iterations as when an exact

solve (stopping condition δ
Ac
rel = 10−10) on the coarse level was performed. We note that when using a fixed number

of iterations (1 and 10), the Stokes problem failed to converge in 200 iteration for the case ∆η = 106.
Given that problems involving highly spatially heterogeneous coefficients will potentially result in a geometric

multigrid hierarchy containing a coarse mesh with many degrees of freedom, the choice of the inexact coarse level
solver within the multigrid preconditioner is important for maintaining the robustness of the preconditioner, and to
ensure good parallel scalability. One straightforward approach is simply to solve the coarse level problem using
preconditioned Krylov methods. In the following we examine the feasibility of this naive approach. The test problem
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considered is identical to the single inclusion problem described in Section 8.1, with a viscosity ratio ∆η = 106.
We consider a one-level multigrid preconditioner using an element resolution of 163 and perform calculations from
8 to 4096 cores on “hexagon”. At the highest core count considered, each sub-domain contains only a single Q2
element. We are primarily interested in the behavior of the coarse level solver at high core counts as this is when
the convergence behavior is most likely to rapidly deteriorate and hinder scalability. Convergence of the coarse level
solver is defined using δ

Ac
rel = 10−6. Iterations are terminated if convergence was not obtained in 800 iterations, or if

the solve time exceeded 10 min. We note that depending on the actual convergence rate of the multigrid preconditioner
used for the viscous block (which is problem dependent), such a high precision solve on the coarse level is not required
to maintain the convergence of the multigrid preconditioner (see Fig. 8).

We explore two classes of coarse level solvers defined via (i) Krylov methods coupled with domain-decomposition
style preconditioners and (ii) hierarchical Krylov methods [65]. The motivation behind using nested solvers stems
from a desire to minimize the number of global reductions required to be performed during each Krylov iteration.
To this end, in the following we considered using Krylov methods with an embedded, fixed number of Chebyshev
iterations. In this way, we only incur the cost of the reductions associated with the Krylov method; we do not require
any global reductions during the Chebyshev iterations. The results of our Krylov coarse level solver tests are presented
in Table 10. The columns “Local solve”, “SpMV” and “Solve” indicate the CPU time required for: local solves
performed by the domain-decomposition preconditioners; performing matrix–vector products; the entire solve. Below
we summarize the main observations.

• FMGRES combined with an additive Schwarz preconditioner with overlap l (ASM(l)) and incomplete LU
factorization with fill level k (ILU(k)) failed to converge within our specified wall time of 10 min for all overlap
sizes considered (l = 1, 2, 3) and all fill factors considered (k = 1, 3). See solver configurations F1–F4 in Table 10.
• Chebyshev iterations preconditioned with ASM(l)/ILU(k) (denoted via C1, C2) resulted in convergence in all

cases. Using l = 2 and k = 3, convergence could be achieved in 125 iterations and 357 iterations on 64 and 4096
cores respectively. The parallel efficiency from 64 to 4096 cores was approximately 24%.
• FMGRES with an embedded, fixed number of Chebyshev iterations are identified via configurations FNC1–FNC3

in Table 10. Chebyshev was preconditioned via block Jacobi (BJacobi) with ILU(k) as a sub-domain solver, or using
ASM(l) with an incomplete Cholesky factorization with fill level k, ICC(k). All of the nested approaches tested
were found to converge on 4096 cores in significantly less time (factors of 3×−20×) than when using Chebyshev
alone as the iterative method. During our experiments, we observed that the results (iteration counts and thus
converged residual values) were not reproducible when calculations were performed on the same number of cores,
unless we used the slower, but more stable modified Gram–Schmidt orthogonalization (denoted by FNC1∗–FNC3∗

in Table 10). With modified Gram–Schmidt orthogonalization, we observed a significant reduction in the iteration
count when using ASM, and in one case a reduced CPU time.

In the last four rows of Table 10, we consider the strong scaling efficiency of FNC2∗ (fastest configuration)
from 8 to 4096 cores. Iteration counts are seen to grow from 19 to 42 and the total solve time achieves an overall
parallel efficiency of 26% over this core count range. We also note that the total CPU time spent in performing the
forward/backward solves (Local solve) and matrix–vector products (SpMV) also scale well.

8.4. Parallel scalability

We first consider the case of a single inclusion with nc = 1 and ∆η = 1 to assess the parallel scalability of the
Stokes and geometric multigrid preconditioner. As in previous experiments, we used δ J

rel = 10−5 and δA
rel = 10−2 as

the stopping condition for the Stokes system and viscous block solve inside B∗U . Due to the simplicity of the viscosity
structure, we use relatively weak smoothers and coarse level solver. On every level (except the coarsest) we define
the smoother to be Cheby(10)/Jacobi. All levels utilize re-discretized (matrix-free) operators, except on the coarsest
level where the operator is assembled. The coarse level solver consisted of FGMRES+[Cheby(30)+BJacobi/ILU(0)]
(similar to FNC1∗ in Table 10). The stopping condition used for the coarse level solver was δ

Ac
rel = 10−2, with the

maximum number of iterations set to 8. All calculations were performed on “hexagon”.
The weak and the strong scaling for the iso-viscous experiments are reported in Tables 4 and 5 respectively. The

CPU times reported relate to one complete Stokes solve. Here “Coarse solve” refers to the total CPU time spent in the
coarse level solver, whilst “Smoother” indicates the total CPU time spent in applying the Chebyshev iterations on the
finest level. “Solve” indicates the total time required to obtain the solution to the Stokes problem.
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Table 4

Weak scaling results for the iso-viscous sinker example, ∆η = 1. The stopping conditions used were δ J
rel = 10−5 and δA

rel = 10−2. The resolution

of the coarse mesh in all experiments was 243.

Elements MG Cores J A its. Coarse Smoother Solve
(fine) levels its. min/max solve (s) (s) (s)

963 3 64 6 1/1 4.2450e+01 7.6928e+01 1.4905e+02
1923 4 512 6 1/2 5.0023e+00 7.7124e+01 1.1335e+02
3843 5 4096 7 1/2 1.1851e+00 8.8014e+01 1.2545e+02

Table 5

Strong scaling results for the iso-viscous sinker example, ∆η = 1. The stopping conditions used were δ J
rel = 10−5 and δA

rel = 10−2. The

geometric multigrid preconditioner used three levels, the finest level contained 963 elements. Beside each CPU time reported, we indicate the
parallel efficiency in brackets.

Cores J A its. Coarse Smoother Solve
its. min/max solve (s) (s) (s)

32 6 1/1 7.3177e+01 (-) 1.3241e+02 (-) 2.6029e+02 (-)
64 6 1/1 4.2450e+01 (86) 7.6928e+01 (86) 1.4905e+02 (87)

128 6 1/1 2.0297e+01 (90) 3.3216e+01 (100) 6.7289e+01 (97)
256 6 1/1 9.9570e+00 (92) 1.8972e+01 (87) 3.6436e+01 (89)
512 6 1/1 4.9781e+00 (92) 9.4518e+00 (88) 1.8371e+01(89)

1024 6 1/1 1.4890e+00 (154) 4.1281e+00 (100) 7.5922e+00 (107)
2048 6 1/1 8.7723e−01 (130) 2.4537e+00 (84) 4.5177e+00 (90)
4096 6 1/1 1.0344e+00 (55) 1.3337e+00 (78) 3.1571e+00 (64)

From Table 4, the weak scaling results show that the total CPU time is approximately constant from 64 to 4096
cores, as is the time spent in the smoother on the finest level. The time spent in the coarse level solver is seen to decrease
with increasing core counts. We note that on 64 cores, all coarse level solves converged due to the relative tolerance
of 10−2, however on 512 cores, several of the coarse level solves terminated early as they exceeded the maximum
number of iterations. On 4096 cores, every application of the coarse level solver failed to converge in 8 iterations.
With increasing core counts, the sub-domain size decreases, thus the forward and backward solves associated with
ILU(0) become cheaper and result in a decrease in the coarse level solve time. When using 64 cores, we observe that
cost of the coarse level solve is out-weighed by the time spent applying the smoother on the finest level. This persists
at higher core counts and assists in obtaining the good weak scaling observed. The iteration counts for the Stokes
problem and the viscous block sub-problem are observed to be approximately constant in going from a 963 to 3843

mesh. For this iso-viscous model, we observe excellent weak scaling efficiency when scaling from 32 to 4096 cores.
The strong scaling experiments summarized in Table 5 consider an iso-viscous model with a total of 963 Q2

elements. A total of three geometric multigrid levels were used. The scaling was performed from 32 to 4096 cores.
Iteration counts are observed to be constant, thereby establishing that the smoothing properties of the method adopted
is independent of the number of cores. In regard to strong scaling, we observed an overall parallel efficiency of 64%.

We now consider a variable viscosity case with ∆η = 104. Based on the results from Table 2, we configure
the coarse level operators within the multigrid hierarchy in the following way: G, Ra, R. On every level (except the
coarsest) we define the smoother to be Cheby(10)/Jacobi. The coarse level solver consisted of FGMRES+[Cheby(10)
+ASM(1)/ICC(0)] (similar to FNC2∗ in Table 10). The stopping condition for the coarse level solver uses δ

Ac
rel = 10−2,

or was terminated after 800 iterations. The strong scaling for the variable viscosity experiments are reported in Table 6.
Unlike the iso-viscous example, to obtain constant iteration counts for the Stokes and viscous block sub-problems

as the number of cores increase, it is necessary to converge the coarse level problem to a given accuracy (see Fig. 8).
For this reason, a more aggressive coarse level solver was used in these variable viscosity problems. From Table 6 we
observe that the number of iterations used to converge the Stokes problem and the cumulative number of iterations used
for all the A sub-problems is approximately constant from 64 to 4096 cores. Only the cumulative number of iterations
used to solve the coarse level problems are seen to increase with increasing core counts. Thus, on 64 cores the coarse
level solve time is 4.8× less than the time spent within the fine level smoother, however at 4096 cores, applying the
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Table 6

Strong scaling results for the variable viscosity (∆η = 104) sinker example broken down into a number of different events within the preconditioner.
The stopping conditions used were δ J

rel = 10−5 and δA
rel = 10−2. The geometric multigrid preconditioner used three levels, the finest level

contained 963 elements.

Cores 64 512 4096

Preconditioner setup (s) 2.6353e+00 5.6080e−01 2.3424e−01
Assemble PT AP (s) 1.1765e+01 1.4522e+00 2.3470e−01

SpMV (s) 8.7006e+02 9.7556e+01 1.4648e+01
Global reductions (s) 3.5105e+01 1.2900e+01 2.2512e+00

Local solve (s) 1.0196e+02 2.1817e+01 3.5088e+00
Coarse solve (s) 1.8872e+02 3.3849e+01 9.1787e+00
Smoother (s) 4.8848e+02 5.1566e+01 7.2146e+00

Solve (s) 9.9545e+02 1.1651e+02 1.9926e+01

J its. 24 24 23
A its. 100 101 98
A coarse its. 347 399 495

Table 7

Comparison of CPU times (s) for the variable viscosity (∆η = 104) sinker example using different coarse level solver strategies. The Stokes
preconditioner used the following stopping conditions: δ J

rel = 10−5, δA
rel = 10−2. The geometric multigrid preconditioner used three levels, the

finest level contained 963 elements. The coarse level solver “GAMG” refers to the smoothed aggregation algebraic multigrid implementation within
PETSc. “Re-partitioned” refers to a coarse level preconditioner which re-distributes the coarse grid onto processor sub-sets. See text for further
details.

Cores 64 512 4096

GAMG Coarse solve 3.3929e+01 4.8522e+00 3.6687e+00
Smoother 3.4835e+02 4.3411e+01 6.9875e+00
Solve 5.9950e+02 7.4663e+01 2.1039e+01

Re-partitioned Coarse solve 1.4028e+02 1.7607e+01 2.9893e+00
Nested coarse solve 1.5587e+01 1.9563e+00 3.3214e−01
Smoother 3.0379e+02 3.8059e+01 5.6223e+00
Solve 6.4287e+02 8.0635e+01 1.1826e+01

coarse level solver cost approximately the same as applying the fine level smoother. The Chebyshev smoother, together
with the nested Krylov coarse level solver are effective at minimizing the number of global reductions, with only 11%
of the total solve time at 4096 cores being spent in such operations. Despite the apparent non-scalable coarse level
solver, when scaling from 64 to 4096 cores, the method achieves an overall strong scaling parallel efficiency of 78%.

We conclude our strong scaling study by comparing the naive Krylov coarse level solver (discussed above) with
(i) a coarse level solver employing the smoothed aggregation algebraic multigrid preconditioner within PETSc
(GAMG), and (ii) a coarse level solver employing a re-partitioned mesh. The coarse level solver within GAMG
consisted of block Jacobi, with an exact LU factorization applied on each sub-domain. Furthermore, a thresholding
value of 0.01 was used for constructing the aggregation graph. Assuming we have decomposed all levels within
our geometric multigrid preconditioner over n p processors, the re-partitioning approach used here re-distributes the
coarsest mesh within the hierarchy onto n p/c processors, where c defines the processor coarsening factor. The sub-set
of processors used to define the re-partitioned mesh are associated with a unique MPI communicator, thus global
reductions are only performed across n p/c processors. The solver used on the re-partitioned mesh consisted of a two
level geometric multigrid employing Galerkin coarse level operators. As a coarse level solver within the re-partitioned
hierarchy, we used GAMG. The smoother used within both the geometric hierarchy (original spatial decomposition
and the re-partitioned decomposition) and the algebraic multilevel hierarchy was given by Cheby(10)-Jacobi. In the
experiments we conducted, c = 16 was used in all cases.

The comparison of the two alternative coarse level solvers is reported in Table 7. In comparison to the “Krylov only”
coarse level solver (presented in Table 6), GAMG appears to be significantly faster on 64 and 512 cores, however it is
only marginally faster on 4096 cores. GAMG exhibits an overall strong scaling efficiency of 44%. We note that our
configuration of GAMG does not appear to scale well past 512 cores. The re-partitioned, nested geometric multigrid
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preconditioner appears to be significantly faster than the “Krylov only” coarse level solvers over all core counts. We
find that while GAMG out-performs the re-partitioned approach on 64 and 512 cores, the re-partitioned approach is
almost 1.8× faster then GAMG at 4096 cores. The overall strong scaling efficiency of the re-partitioned approach is
85%. The efficiency of the coarse solver, in isolation from the complete Stokes solve, is found to be 73%.

9. Geodynamic example: continental rifting and break-up

9.1. Background

Here we present results of 3D numerical models which simulate the propagation of continental break-up. The
break-up of continents occurs after a phase of continental rifting, in which the crust thins either over wide regions, or
narrow localized ones, thereby participating to the diversity of passive continental margins. The processes that lead to
continental break up, as well as the rate of thinning and initial stages whereby the continental crust thins are important
factors influencing the formation, maturation and the storage of hydrocarbons along passive margins, and hence are
of prime economical interest.

The timing of continental break-up has been carefully documented over our planet, revealing that when two con-
tinents separate, there are periods of very fast propagation of break-up and periods of quiescence [66]. The period of
quiescence is usually associated with large fracture zones and formation of oblique margins. Such oblique structures
cannot be understood using 2D models. Whilst numerous 3D numerical simulations of continental break-up have been
performed [67–72], due to the algorithmic challenges associated with high resolution 3D, time-dependent, nonlinear,
large deformation modeling of the lithosphere and crust, few satisfy modeling requirement MR5 (see Section 1.2).
Previous work consider model domains on the order of 100×50×100 km3, or use a low spatial resolution (∼50 km).
Most other 3D simulations of rifting are limited to oblique continental extension [73–78], or consider models of
oceanic spreading [79,80] which require fewer time steps and/or smaller model domains.

9.2. Model description

The models we present here are designed to determine how periods of quiescence might occur during the propaga-
tion of continental break-up and how such periods relate to the formation of oblique margins. In this demonstration we
solve the Stokes problem (Eqs. (1), (3)) with the temperature, pressure and strain-rate dependent viscosity given by
Eq. (11). This definition of the effective viscosity involves a stress limiter τy which parameterizes the brittle behavior
of rocks near the surface. The rocks are assumed to have a buoyancy defined by Eq. (12) in which both α and β are
non-zero and the reference pressure and temperature were taken as p0 = 0 Pa and T0 = 0 K.

The history-dependent plastic strain (damage) variable ε p is defined on each material point. The evolution of
Eq. (10) is updated using an explicit forward difference in time approximation. At each material point xk , if yielding
occurs, the plastic strain is updated following the solution of the Stokes problem according to

ε p(xk, t +∆t) = ε p(xk, t)+∆t ε̇ I I (xk, t), (31)

where ∆t is the time step.
The model domain spans 1200 km × 600 km in the x–z direction and 200 km in the y direction. Initially, the

model domain is divided into three regions which we refer to as “mantle”, “weak crust” and “strong crust”. Material
points contained within the mesh are used to identify the different regions. Each region defines a unique set of material
parameters. The layer geometry and material parameters are defined in Fig. 9 and Table 8.

In our models, the damage state variable ε p is initially assigned a random value in the range [0, 0.03], except within
a localized damaged zone where the amplitude of the noise is in the range [0, 0.3]. This damaged zone has been added
near the front side (z = 0 km) of the model domain (see Fig. 9) to trigger rapid continental rifting and break-up,
thereby allowing us to study how this localization propagates within the model domain.

It is known from 2D numerical simulations [81,3] that the rheological nature of the lower crust is of prime im-
portance for the structuration (the fault spacing and sequence) of the thinned continental crust along passive margins.
For this reason, we investigate how break-up propagates when using a weak lower crust (representing a mobile belt
(MB)), or a strong lower crust (representing a continental shield (CS)). The upper and lower crust are both initially 20
km thick (see Fig. 9).
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Fig. 9. The solution of the CS model with non cylindrical boundary conditions is used to illustrate the model set-up. The velocity field (gray
arrows) illustrates the influence of the slight shortening component in the z-direction. The second invariant of strain-rate (shown as transparent)
outlines the initial damaged zone.

Previous 3D instantaneous flow models have also shown that the direction of the flow in the mantle beneath the tip
of the propagating rift might enhance, or annihilate the propagation [82]. Thus we additionally explore the effects of
using two types of velocity boundary conditions. The first consists of purely cylindrical extension system of 2 cm/yr
applied symmetrically in the x-direction. The second boundary condition (depicted in Fig. 9) consists of symmetric
extension of 2 cm/yr applied in the x-direction, together with a slight component of shortening (2 mm/yr) in the
z-direction, which is applied on the opposite side of the damaged zone.

The models employ an ALE formulation in which only the free surface is advected with the fluid velocity, whilst
all other boundaries remain stationary through time. At the base of the model, we prescribe an inflow velocity vbase
which is computed at each time step such that the average volume of the domain remains approximately constant.

The evolution of temperature T is given by the following energy conservation equation

∂T

∂t
+ u · ∇T = ∇ · (κ∇T ) . (32)

In our implementation, the temperature T in Eq. (32) is discretized using Q1 finite elements which overlap the
Q2 velocity space. The advection–diffusion equation is stabilized via SUPG [83]. The Stokes problem and energy
equation are solved in a de-coupled manner, thus the temperature dependence in the rheology (Eq. (7)) and forcing
function (Eq. (12)) does not introduce an additional nonlinearity. Dirichlet boundary conditions are applied at top
(y = 200 km) and bottom (y = 0 km) of the model domain, with respective values of Ta = 0◦C and Tb = 1400◦C.
Neumann boundary conditions corresponding to zero normal heat flow are prescribed on all vertical boundaries. The
initial conditions for temperature were set according to the analytical solution for 1D infinite half space cooling
model [84], with a cooling time of 300 Myr and a thermal diffusivity κ = 10−6 m2 s−1. In this analytic solution, the
temperature at infinity and at the surface corresponds to the Dirichlet boundary conditions Tb and Ta respectively.

The inclusion of a stress limiter (τy) within the rheology and the choice of non-zero values for β in Eq. (12)
introduce several nonlinearities into the Stokes problem. The solution of the resulting nonlinear system is described
in Section 4.

The simulation results presented were performed using 512 cores on “Rostand”, an SGI ICE 8200 with compute
nodes consisting of 2 × 6 Intel Xeon (Series 5600) cores running at 2.8 GHz. Each model utilized a mesh resolution
of 256 × 32 × 128 Q2 elements. The multigrid preconditioner for A was configured with three levels, using the
following element hierarchy (from the coarsest to the finest level); 32 × 16 × 16, 128 × 32 × 64, 256 × 32 × 128.
We used CG+ASM(4)/ILU(0) (see Table 10, configurations F1–F4) as the coarse level solver. The coarse level solver
was terminated after 25 iterations, or if the initial residual was reduced by a factor of 104. Each model required
approximately 1500 time steps, with the average CPU time per time step being ∼160–200 s. This CPU time reflects
the total time taken for the solution of the nonlinear Stokes problem and all other components, including; nonlinear
residual evaluations, interpolation between material points and the quadrature points, updating all material point
properties (velocity, position, plastic strain), all mesh geometry updates required by the ALE formulation and any
requested output.
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Table 8
Physical quantities of the different material regions used in the rifting experiments. All parameters are defined in Section 2. The mobile belt (MB)
lithosphere and continental shield (CS) lithosphere models only differ in the definition of the lower crust. In the CS model, the parameters listed
under “strong crust” are applied in both the upper and the lower crust regions, whereas in the MB model they are only used in the upper crustal
region.

Quantity Unit Strong crust Weak crust Mantle

η0 Pa s 1027 1026 1030

θ ◦C−1 2× 10−2 2× 10−2 1.8× 10−2

φ0
◦ 30 30 30

C0 Pa 2× 107 2× 107 2× 107

τmms Pa 2× 108 2× 108 3× 108

φ∞
◦ 6 6 6

ε
p
∞ - 0.3 0.3 0.15171

ρ0 kg m−3 2.7× 103 2.7× 103 3.3× 103

α ◦C−1 2× 10−5 2× 10−5 2× 10−5

β Pa−1 0 0 3× 10−12

p0 Pa 0 0 0
T0 K 0 0 0

κ m2 s−1 10−6 10−6 10−6

Layer thickness [CS] km 40 0 160
Layer thickness [MB] km 20 20 160

Fig. 10. Accumulated plastic strain (ε p) outlining the passive margins structures which are represented on the deformed free surface of the models
for the 3D rifting experiments. Gray area represents oceanic regions where the mantle has been exhumed to the surface. The white contour line
denotes the Ocean–Continent Transition (OCT). For clarity, the topography shown has been exaggerated by a factor of five.

9.3. Discussion

In the following, we will regard the initial onset of continental break-up to have occurred at the moment the
continental lithosphere is separated by “oceanic” spreading material at the surface at the level of the damaged zone
(white contour lines in Fig. 10). Since we are interested in the timing of propagation, after this first event, all times
reported are given with respect to the onset of initial continental break-up.
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Comparing how continental break-up propagates through continental shield (CS) or mobile belt (MB) lithosphere
using cylindrical boundary conditions, we observe no major differences in the rift geometry after break-up has
occurred. In both cases, break-up propagates through the model domain in 5.5 Myr and 10 Myr after the initial
break up (see upper two panels of Fig. 10). We find that the oceanic seafloor width ranges from 190 km at the front of
the domain, to 100 km at the back (z = 600 km) of the model.

The major difference between the two models relates to the distribution of accumulated strain before break-up. In
the MB case (Fig. 10, top right), a wide rift outlined by the concentration of plastic strain has developed at the front
of the triggered continental rift, forming several horsts (topographic highs) and grabens (topographic lows). In the CS
case (Fig. 10, top left), there is no evidence of horst and graben like topographic features, except for the main narrow
rift. The observed differences in the mode of continental rifting in response to the rheology of the lower crust are
consistent with previous 1D and 2D thermo-mechanical models [85,81].

In the MB case, the initial wide rift affecting the continental crust has led to a slight offset (in the x direction)
between the triggered rift, and the continental grabens which form at the rear of the damaged zone before the initial
continental break up. As a result, a slight obliquity in the spreading regime exists at∼10 Myr after the initial break-up
which is not observed in the CS case. Wide rift deformation seems therefore to favor slight obliquity in rifting and
spreading when cylindrical boundary conditions are applied.

In the two models which have a slight component of normal shortening imposed normal to main extension direction
(Fig. 10 lower four panels), the average rate of thinning of the crust is reduced by ∼20% and, as a result, the initial
break-up is delayed by ∼3 Myr. This behavior was already noted by van Wijk and Blackman [82], however their
models had a predefined 3D geometry and thus could not be used to investigate the changing geometry of the rift, or
to induce obliquity.

Both models are seen to develop oblique structures, however the manner in which the obliquity is accommodated
is distinctly different. In the model employing a continental shield lithosphere (strong lower crust), the obliquity
is accommodated by the development of an offset mid-oceanic ridge, whereas in the mobile belt lithosphere model
(weak lower crust) the obliquity it is accommodated by oblique normal faults and transverse relay faults on the passive
margin.

In the CS model, spreading propagates rapidly during a first phase of 4 Myr after the initial break-up. From 4 to
11 Myr, the propagation is very slow and spreading occurs obliquely because it is attracted by the offset axial valley,
which at this stage has not yet undergone break-up. At 11 Myr after the initial break-up, spreading starts in the offset
axial valley and at 13 Myr, the two ridges merge together breaking the topographic ridge that previously separated
them (Fig. 10 left central panel).

Examining the MB model, we observe that in places where offset ridges form, the fault structures on the passive
margins are normal to the direction of extension and oblique to the Ocean Continent Transition (OCT). In this model,
continental break-up stalls for more than 20 Myr after the initial break-up. As a result, the rift structures rotate, whilst
remaining parallel to the OCT and spreading remains symmetrical. The rotation of the structure due to spreading
largely reduces the extension rate at the front of the rift, giving rise to a strike slip regime outlined by the obliquity of
the active structures (Fig. 10 right central panel).

Our models confirm that a weak lower crust (mobile belt) favor wider passive margins and that a quiescent period
of propagation of continental rifting can be induced by shortening in the direction normal to the ridge. These models
show, for the first time, that a very small amount of axial shortening also induces obliquity and that the accommodation
of this obliquity by the mid-oceanic ridge, or by the continental structures is a strong function of the viscosity of the
lower crust. A weak lower crust favors margins that are oblique to spreading, whilst a strong lower crust favor ridge
jumps and transform margins. More work is needed to fully explore these regimes, and in particular, to test the
influence of the mantle lithosphere buoyancy and rheology e.g. [86,87] on the dynamics and timing of propagation.

10. Summary

We have presented a computationally efficient strategy for solving highly variable viscosity Stokes problems on
logically structured hexahedral meshes using a hybrid material-point, finite element spatial discretization. The method
has been specifically developed to enable high resolution, three-dimensional simulations of processes related to the
dynamics of Earth’s lithosphere.
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Table 9
Memory bandwidth (GB/s), peak performance (GF/s) and arithmetic intensity (F/B) for various processors, as measured using the STREAM Triad
benchmark [55,56].

Processor Bandwidth (GB/s) Peak (GF/s) Balance (F/B)

E5-2680 8-core 38 173 4.5
E5-2695v2 12-core 45 230 5.2
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 29.3 205 7
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi SE10P 161 1060 6.6
E5-2699v3 18-core 60 660 11

To obtain fast, scalable and robust solutions of the discrete Stokes problem, we have utilized efficient matrix-free
operators and a flexible multigrid preconditioner. The underlying philosophy of the preconditioners design is to defer
as many decisions related to the definition of smoother, coarse level solver, coarsening factor and type of coarse level
operator to run-time. This degree of flexibility enables enormous “solver tuning” potential for each new geodynamic
application.

The ability to define different coarse level operators on each level within the multigrid hierarchy was demonstrated
to be particularly advantageous. We showed that using a Galerkin operator on only the coarsest level can provide
significant acceleration of the multigrid preconditioner due to its ability to capture sub-element scale viscosity struc-
tures. Other factors we examined to improve the parallel scalability of the variable viscosity multigrid preconditioner
included the use of Chebyshev-based smoothers, and nested Krylov coarse level solvers. On some architectures, di-
rect application of such coarse level solvers is likely to represent a computational bottleneck when using >10 − 30k
cores. To assist in maintaining the necessary robustness and scalability of the coarse level solver, we also explored
using algebraic multigrid and a re-partitioned coarse mesh scheme. The re-partitioned approach was found to be the
fastest alternative we examined, and provided the best strong scaling efficiency. We currently do not have a perfor-
mance model to guide how frequently, or how aggressively processor coarsening should be performed within our
re-partitioned approach. Developing automatic procedures to enable this is an on going effort.

Lastly, we demonstrated the potential of the hybrid discretization and Stokes preconditioner by examining a com-
plex geodynamic problem associated with continental rifting and break-up. For the geodynamic application consid-
ered, the scientific throughput we obtained indicates that it is now possible to utilize Q2–Pdisc

1 finite elements to solve
high resolution 3D, nonlinear, time-dependent lithospheric dynamics models with modest computational resources.

Whilst we have utilized an example from regional scale lithospheric dynamics to demonstrate the new methodol-
ogy, we emphasize that the approach described is completely applicable to global scale geodynamic processes such
as the dynamics of subduction and mantle convection.
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Table 10

Performance of different coarse level solver configurations for the sinker problem with nc = 1,∆η = 106. Columns denoting iterations (A its.)
which contain “F” indicate the solver failed to converge in 800 iterations, or if 10 min elapsed. See Section 8.3 for additional details.

Solver configuration Solver ID Cores A its. Local solve SpMV Solve
(s) (s) (s)

FGMRES+ASM(1)/ILU(1) F1 4096 F – – –
FGMRES+ASM(1)/ILU(3) F2 4096 F – – –
FGMRES+ASM(2)/ILU(3) F3 4096 F – – –
FGMRES+ASM(3)/ILU(3) F4 4096 F – – –

Cheby+ASM(2)/ILU(3) C1 64 125 2.7431e+01 9.9491e−01 2.1562e+02
Cheby+ASM(2)/ILU(3) C2 4096 357 1.1863e+01 6.1683e−01 1.4036e+01

FGMRES+[Cheby(30)+BJacobi/ILU(3)] FNC1 4096 298 1.1355e−01 3.6913e+00 3.9424e+00
FGMRES+[Cheby(10)+ASM(1)/ICC(3)] FNC2 4096 110 9.2993e−01 9.7277e−01 1.7574e+00
FGMRES+[Cheby(10)+ASM(2)/ICC(3)] FNC3 4096 106 2.2058e+01 1.6593e+01 2.4100e+01

FNC1 +modified Gram–Schmidt Orthog. FNC1∗ 4096 300 1.1622e−01 3.6699e+00 4.2662e+00
FNC2 +modified Gram–Schmidt Orthog. FNC2∗ 4096 42 3.5611e−01 3.7599e−01 7.3459e−01
FNC3 +modified Gram–Schmidt Orthog. FNC3∗ 4096 22 4.5877e+00 3.4344e+00 5.9626e+00

FNC2∗ 8 19 6.6884e+01 2.0700e+01 9.6883e+01
FNC2∗ 64 19 1.1278e+01 6.4829e+00 1.5866e+01
FNC2∗ 512 27 2.1224e+00 1.7332e+00 2.7305e+00
FNC2∗ 4096 42 3.5611e−01 3.7599e−01 7.3459e−01

Appendix B. Evaluation of coarse level solvers using preconditioned Krylov methods

See Table 10.
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