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Abstract—Simulations of long-term lithospheric deformation
involve post-failure analysis of high-contrast brittle materials
driven by buoyancy and processes at the free surface. Geody-
namic phenomena such as subduction and continental rifting
take place over millions year time scales, thus require efficient
solution methods. We present pTatin3D, a geodynamics modeling
package utilising the material-point-method for tracking material
composition, combined with a multigrid finite-element method
to solve heterogeneous, incompressible visco-plastic Stokes prob-
lems. Here we analyze the performance and algorithmic tradeoffs
of pTatin3D’s multigrid preconditioner. Our matrix-free geomet-
ric multigrid preconditioner trades flops for memory bandwidth
to produce a time-to-solution > 2× faster than the best available
methods utilising stored matrices (plagued by memory bandwidth
limitations), exploits local element structure to achieve weak
scaling at 30% of FPU peak on Cray XC-30, has improved
dynamic range due to smaller memory footprint, and has more
consistent timing and better intra-node scalability due to reduced
memory-bus and cache pressure.

Index Terms—geodynamics, Stokes, variable viscosity, multi-
level preconditioners, vectorization, matrix-free

I. INTRODUCTION

The structures we observe in the present day Earth result
from large-deformation processes that span million-year time
scales. While rocks behave elastically on short time scales
(e.g., seconds to thousands of years), over periods of 105–109

years, the dominant mode of deformation exhibited by rocks
is ductile. Consequently, the evolution of rocks in geodynamic
contexts is frequently described by the equations of stationary
Stokes flow, which model the dynamics of an incompressible,
highly viscous, creeping fluid. Simulation of geodynamic
processes such as subduction and continental rifting place
stringent requirements on numerical methods.
• It must be possible to track several rheologically distinct

materials with nonlinear history-dependent rheology.
• Deformation tracking must remain accurate long after the

material has experienced plastic failure.
• Models must be efficient for three-dimensional simula-

tions at sufficiently high resolution to resolve brittle shear
zones in the lithosphere (40–200 km thick) and crustal
(5–50 km thick) layers.

• The methods must accommodate a deformable free sur-
face.

Because of the presence of compositionally-distinct materials,
brittle failure, and an inherent temperature dependence, the
effective viscosity of rocks may be discontinuous, with jumps
on the order of 109 Pa s. The solution of such nonlinear
heterogeneous Stokes problems typically accounts for ∼90%
of the overall simulation time; thus solver robustness and
efficiency are paramount. Indeed, the low performance of
Stokes solvers represents a computational bottleneck which
frequently impedes geodynamic and Earth science research
efforts.

The marker-and-cell (MAC) method [1] and material-point
method (MPM) [2] have been widely used in the geodynamics
community because of their ability to accurately track post-
failure deformation (e.g., [3]–[18]). The community is split be-
tween staggered-grid finite-difference methods [19] and mixed
finite element methods for discretizing the Stokes problem.
Finite element methods provide valuable geometric flexibility
for tracking the deforming free surface using a boundary-fitted
mesh (feasible since topographic variation is typically less
than 10 km). Early use of finite element methods frequently
involved low-order methods, such as the inf-sup (LBB con-
dition) violating Q1-P0 element [6], [10], [14], [17], or the
stabilized Q1-Q1 element [20], [21]. Both element types may
exhibit pressure artifacts due to the unstable “checker-board
mode” (Q1-P0, [22]) or due to the artificial compressibility
introduced by polynomial projection stabilization [23]. As
previously used by [15], [18], we use the inf-sup stable and
locally conservative Q2-P disc

1 element. Though robust, this
element has more than twice as many nonzeros per row (cf.
Q1-Q1 stab.), leading to significant cost for assembled matrix
representations. Nonetheless, it is among the least expensive
locally conservative and inf-sup stable elements which can
accurately represent the hydrostatic mode present in models
with a free surface.

Multigrid methods [24], [25] are the most successful and
widely applicable scalable approach to solving elliptic prob-
lems. Within the geodynamics community, applying multigrid
methods directly to the coupled Stokes problem, typically
using Vanka smoothers [26], or splitting the system using
approximate Schur complement techniques [27] have been
explored, although there is no clear consensus as to which
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is universally superior. The former is more appropriate for
staggered-grid finite-difference methods (see [12], [28]) while
the latter has been more popular for use with finite element
methods [29], [30].

This paper is organized as follows. § II presents the
model and discretization, § III discusses design issues and
performance of solver algorithms, § IV presents numerical
results and performance analysis, § V presents a continental
rifting simulation, and § VI draws conclusions and identifies
remaining open problems.

II. MODEL AND DISCRETIZATION

A. Continuum equations

We consider the long-term dynamics of rocks to be de-
scribed by the conservation of momentum of a creeping fluid
with an isotropic viscosity in a domain Ω with boundary ∂Ω:

∇ ·
[
2η(u, p)D(u)

]
−∇p = f , (1)

where u, p are the fluid velocity and pressure, respectively, η
is the (nonlinear) effective shear viscosity; f is the body force;
and the strain-rate operator D(u) is given by

D(u) := 1
2

(
∇uT +∇u

)
. (2)

The forcing term in Equation (1) is taken to be of the form
f = ρg, where ρ is the fluid density and g the gravity vector.
We assume incompressibility (simplified mass conservation):

−∇ · u = 0. (3)

Equations (1) and (3) are closed with the following boundary
conditions,

u = ū x ∈ ΓD (4)
σ · n = t̄ x ∈ ΓN , (5)

where σ is the total stress, t̄ the traction vector, n the outward
pointing normal to the boundary ∂Ω. ΓD and ΓN denote the
regions along the boundary ∂Ω where the Dirichlet and Neu-
mann boundary conditions are applied, respectively, subject to
the restrictions that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω.

In geodynamic models, typically multiple rock types (e.g.,
upper crust, lower crust, mantle) are represented. Associated
with each rock type (which we denote by Φ) is a particular rhe-
ology that defines the flow law used to compute the effective
nonlinear viscosity (η) and density (ρ). The effective viscosity
accounts for both the parametrized creeping of viscous rocks
and brittle behavior, while ρ accounts for compositional and
thermal buoyancy variations. In addition to the conservation
of mass and momentum, we evolve Φ according to

DΦ

Dt
= 0. (6)

We note that while Equations (1) and (3) are independent
of time, temporal dependence in the flow field is introduced
through the evolution of rock type and temperature (when
applicable, see § V).

B. Finite element discretization

We discretize Equations (1) and (3) using a standard mixed
Q2-P disc

1 finite element discretization [22]. The weak form of
the linearized Stokes problem is as follows: Given a certain
(u∗, p∗) ∈ V ×Q, find (u, p) ∈ V ×Q such that

A(u,w;u∗, p∗) + B(u, q) + B(w, p) = F(w) (7)

for all (w, q) ∈ V0 × Q, The bilinear forms A(·, ·;u∗, p∗)
and B(·, ·) and the linear functional F(·) in Equation (7) are
defined as

A(u,w;u∗, p∗) =

∫
Ω

2η(u∗, p∗)D(u) : D(w) dV, (8)

B(w, q) = −
∫

Ω

q∇ ·w dV, (9)

F(w) = −
∫

Ω

w · f dV +

∫
ΓN

w · t̄ dS. (10)

The spaces used are V = H1(Ω) and the corresponding
homogeneous Dirichlet space V0 = H1

D(Ω) for which w ∈ V0

vanishes along ΓD (Dirichlet boundary), along with the pres-
sure space Q = {q ∈ L2(Ω) :

∫
Ω
q dV = 0} if ΓN = ∅,

otherwise Q = L2(Ω).
We partition Ω using a mesh of structured but deformed

hexahedral elements. To preserve the order of accuracy of
the Q2-P disc

1 discretization, we define the pressure basis in
the x, y, z coordinate system, as opposed to in the “mapped”
coordinate system [31], [32]. The locally conservative (el-
ementwise) properties of this element are highly desirable
since many of the dynamically processes we wish to model
utilize a free surface boundary condition (σ = 0) and are
driven entirely by buoyancy variations. Under these conditions,
globally conservative elements (e.g. Q2-Q1), or low-order
stabilized methods (Bochev stabilized Q1-Q1), tend to produce
unacceptable numerical artifacts in the velocity and pressure
field unless an extremely high mesh resolution is used [33].

C. Material-point method

The rock lithology Φ is discretized by using a set of
Lagrangian material points. The flow law and forcing term
associated with a given lithology is evaluated at the position
of each material point xp, p = 1, 2, . . . , np. The resulting
effective viscosity ηp and density ρp is projected onto the
quadrature points used to evaluate the relevant terms in the
nonlinear residual in the following manner.

We assume that an arbitrary material point property f , is
discretized via

f(x) ≈ δ(x− xp)fp. (11)

We then utilize an approximate local L2 projection of fp onto
a continuous Q1 finite element space. The corner vertices of
each Q2 finite element define the mesh fp is projected onto.
The local reconstruction for a node i is defined by

f̂i =

∫
Ωi
Ni(x)f(x)∫
Ωi
Ni(x)

≈
∑
pNi(xp)fp∑
pNi(xp)

, (12)



where the summation over p includes all material points
contained within the support Ωi of the trilinear interpolant Ni.
Within each element, the projected material property, denoted
by f̃(x) is defined by interpolation:

f̃(x) =
∑
i

Ni(x)f̂i. (13)

D. Parallelism

Support for all parallel linear algebra, in the form of matri-
ces, vectors, preconditioners, Krylov methods, and nonlinear
solvers, is provided by PETSc [34]–[36].

Parallelism is achieved by spatially decomposing the struc-
tured Q2 finite element mesh containing M×N×P elements
into structured subdomains containing m×n×p Q2 elements.
The underlying mesh data structure utilizes the DMDA object
defined within the PETSc library.

Parallelism associated with material points is defined by
the spatial decomposition of the FE mesh. Material points
located within a particular mesh subdomain associated with
a processor k are managed by processor k. Following the
advection of all material points, we apply a point location
routine that simultaneously returns the local element index
containing the material point and its local coordinate ξp.
If the point location routine determines that the material
point is not located on the current subdomain, the material
point is inserted into a list Ls. All material points in Ls
are sent to all neighboring mesh subdomains, and the point
location algorithm is reapplied to the newly received material
points Lr. Material points in Lr which are not contained
within the current mesh subdomain are deleted. This simple
strategy enables the communication of material points between
processors and permits material points to leave the domain if
any outflow type boundary conditions are prescribed.

III. SOLVER DESIGN

An ideal solver would converge rapidly and reliably inde-
pendent of resolution, coefficient contrast and structure, and
nonlinearity, while exposing fine-grained parallelism and using
little memory so that a broad range of problem sizes can be
solved on a given machine. In practice, solver efficiency bene-
fits from some degree of tuning to the problem, machine, and
desired turnaround time. Retuning solvers for every scenario
is not feasible, thus it is important that the solver design be
simplified enough for the end user to make educated choices
with predictable behavior. Since parallel solvers for nonlinear
heterogeneous Stokes problems are relatively complicated,
we present a unified approach reflecting the composition of
components in PETSc [37], [38], and we demonstrate the most
important trade-offs.

A. Nonlinearities

Since nonlinearities are evaluated at material points (§ II-C)
and projected into a continuous space, we seek to amortize the
cost of projection over a linear solve. The rheological models
we consider typically define an effective viscosity η(·) which
is a function of the strain-rate D(u), leading to the following

Picard linearization of the weak form of Equation (7): Find
w, p such that∫

Ω

D(v) : η(D(u))I : D(w) dV

+ B(v, p) + B(w, q)−F(v) = 0, ∀ v, q.

A Picard iteration involves successive solves with η(D(u))
taken from the previous iteration. For isotropic materials,
this involves solves with a spatially varying scalar (isotropic)
effective viscosity. Picard linearization is observed to stagnate
in many plasticity models, so we turn to a Newton method
which provides much faster convergence in the terminal
phase. Newton linearization leads to a tensor-valued coefficient
η(D(u))I + η′ ⊗D(u) that, when η(D(u)) = η̂( 1

2 |D(u)|2)
depends only on the second invariant of the strain-rate tensor,
becomes η(D(u))I + η̂′D(u) ⊗ D(u) (where η̂′ is now a
scalar). For yielding and shear-thinning materials, η̂′ < 0, so
the viscosity tensor is flattening in the direction D(u). This
anisotropy leads to difficulties with smoothers in multigrid;
therefore, since it is transient and usually localized, we use
the true Newton linearization only when applying the Krylov
operator in the (approximate) solves at each Newton step. For
the preconditioner, which is the primary cost, we use the Picard
linearization.

Newton iterations are guarded by a backtracking line search,
and tolerances for the linear solve are adaptively set by using
the Eisenstat-Walker [39] method. As we will demonstrate,
discrepancy between the sizes of residuals in velocity and
pressure components can lead to slowed convergence, so it
is useful for both diagnostic and reliability reasons to make
the full residual available. GMRES defines the residual only
via a recurrence; thus it is expensive to compute on each
iteration. In such cases, we prefer to use GCR [40], which
is a flexible method (can tolerate a nonlinear preconditioner)
and provides the current iterate explicitly. Several of our
solver configurations involve inner iterations that make the
preconditioner nonlinear, in which case we must use either
GCR or flexible GMRES [41]. For extremely ill-conditioned
problems, (F)GMRES is preferred for its better numerical
stability.

B. Field-split methods
Each Newton iteration on the Stokes problem requires

solving a system of the form[
Juu Jup
Jpu 0

]
︸ ︷︷ ︸

J

[
δu
δp

]
︸ ︷︷ ︸
δX

= −
[
Fu
Fp

]
︸ ︷︷ ︸

F

. (14)

The viscous subproblem Juu is SPD and analogous to an elas-
ticity problem, with coefficient variation caused by material
composition and dependence on strain-rate and temperature.
Although a Picard linearization is typically used for the pre-
conditioner, we do not distinguish in the following discussion.
The convergence of splitting methods for Equation (14) will
depend crucially on approximations to the Schur complement

S = −JpuJ−1
uuJup. (15)



Several ways exist for approximating S [27], [29]. We will
use a pressure mass matrix scaled by the inverse of effective
viscosity η(D(u)). This preconditioner is simple and effective
when used with discontinuous pressure spaces and is spectrally
equivalent under some smoothness assumptions [42]. With
such a simple preconditioner for S, the (approximate) action
of J−1

uu using multigrid methods will be the leading cost in our
preconditioner. Before going into detail, we consider the two
approaches for constructing a preconditioner for the coupled
problem in Equation (14).

Equation (14) admits the block factorization[
Juu Jup
Jpu 0

]
=

[
Juu 0
Jpu S

] [
1 J−1

uuJup
0 1

]
(16)

(the non-unit diagonal can equivalently be grouped with the
upper factor). Application of this block factorization using
accurate iterative solves to apply J−1

uu and S−1 is Schur
complement reduction (SCR). The Uzawa method [43] is
a well-known stationary iteration in the SCR family. These
methods tend to be reliable, but each application of the Schur
complement S involves an accurate solve with Juu, so they
tend to be expensive. The other approach is to iterate on
the full space problem (e.g. solve Equation (14) for δu, δp
simultaneously) and adopt a preconditioner defined by an
approximate form of the factorization in Equation (16). The
lesser triangular factor is typically dropped in this approach,
leading to the block-triangular preconditioner

P =

[
J̃uu 0

Jpu S̃

]
, (17)

where the tilde indicates a spectrally equivalent approximation
(multigrid for J̃uu and the viscosity-scaled mass matrix for
S̃). Dropping the triangular factor is justified because, with
exact J̃uu = Juu and S̃ = S, the left- or right-preconditioned
operators P−1J and JP−1, satisfy the minimal polynomial
(λ− 1)2 = 0 so that a suitable Krylov method will converge
in at most two iterations [44], [45]. Unfortunately, the pre-
conditioned matrix is non-normal and often leads to increased
dependence on coefficient structure, a phenomenon discussed
further in § IV-A.

C. Multigrid methods

We apply the action of J̃uu using a multigrid V-cycle
containing both geometric and algebraic parts. This is the
most performance-critical part of the simulation, so it is impor-
tant to balance implementation efficiency with robust conver-
gence. We are interested in mixing matrix-free and assembled
matrices and would like to expose fine-grained parallelism.
Multiplicative smoothers are difficult to implement efficiently
in parallel [46], have poor memory locality properties, and
are especially ill-suited for use with finite element methods.
To see this last effect, consider that computing a pointwise
residual at a vertex involves visiting all quadrature points
of all elements adjacent to that vertex. When computing a
global residual, each quadrature point is visited only once;
but when applying a multiplicative smoother, each quadrature

point is visited once for each basis function with support on
that quadrature point. Naively, this leads to an overhead of
(k+ 1)d for Qk finite elements in d-dimensions, much larger
than can be recovered with intricate optimizations. Fortunately,
extensive testing reinforces the results of [47] showing that
polynomial smoothers for problems such as ours and elasticity
attain efficiency similar to that of a multiplicative smoother,
even for assembled matrices. For production use and simplicity
of presentation in this paper, unless stated otherwise, we fix
the smoother as Jacobi-preconditioned Chebyshev iterations
targeting the interval [0.2λmax, 1.1λmax], where λmax is an
estimate of the largest eigenvalue of the Jacobi-preconditioned
operator, computed by a few iterations of a Krylov method.

Structured meshes with an IJK topology are employed in
this work, however nodal coordinates are not required to be
parallel to the x, y, z coordinate system. We utilize nodally
nested mesh hierarchies, thereby allowing the geometry (node
coordinates) of the coarse mesh to be trivially defined via
injection. The prolongation Pk+1

k of the velocity field from
level k (coarse), to k + 1 (fine), uses trilinear interpolation
(i.e., associated with an embedded Q1 finite element space on
the nodes of the Q2 discretization). Restriction is then defined
by Rk

k+1 = (Pk+1
k )T . Coarse level operators are defined by

either rediscretization of A on the coarse level mesh, or via
the Galerkin approximation Acoarse = (Pk+1

k )TAfineP
k+1
k .

Galerkin coarsening is more robust but is expensive to
compute and requires assembled matrices, thereby requiring
additional storage and thus limiting the range of problem sizes
which are tractable on a given machine. Consequently, we
prefer to perform at least one level of geometric coarsening
with the finest level applied matrix-free, followed by an
assembled level used either for further geometric coarsening
with Galerkin, or to enable switching to algebraic multigrid.
Since our implementation does not support distributed geo-
metric coarsening (to reduced process sets), we use GAMG, a
smoothed aggregation method available in PETSc to perform
further distributed coarsening. We provide the six rigid-body
modes and set a strength threshold of 0.01. The same smoother
configuration is used in the geometric and algebraic parts of
the multigrid cycle.

D. Matrix-free operators

Iterative solves using assembled sparse matrices are over-
whelmingly limited by memory bandwidth, an increasingly
precious commodity on modern hardware [48]. Each row
of a matrix assembled by using a Q2 discretization of the
viscous problem has between 81 and 375 nonzeros, with an
average of 192 (corners, edges, faces, and interior). This is a
significant memory overhead and must be streamed through
cache every time the operator is applied. Each nonzero matrix
entry requires loading the scalar value and column index, only
to perform one multiply and one add. If we assume that the
vector reuses cache perfectly and count only the bandwidth
cost for matrix entries and column indices, we observe 85%
of STREAM Triad peak in sparse matrix multiplication on
Edison, a Cray XC-30 at NERSC. The arithmetic intensity of



this operation is less than 1 flop for every 4 bytes (depending
on column index optimization; 1/5.33 as implemented for the
test above). Current hardware delivers between 4 and 9 flops
per byte (5.17 on Edison—460.8 GF/s at 89 GB/s Triad; 7.9 on
Blue Gene/Q—204.8 GF/s at 26 GB/s Triad; similar for GPUs
and Xeon Phi). Good sparse matrix implementations typically
realize a high fraction of STREAM bandwidth; thus, little
improvement can come from further sparse matrix optimiza-
tions. Moreover, memory bandwidth is a shared resource, so
bandwidth-limited applications see poor intranode scalability
and increased performance variability compared to compute-
limited applications.

Finite element methods can be implemented without assem-
bled matrices. Consider the application of the discretized scalar
operator Au representing −∇(κ∇ · u). The global residual is
computed as

Au =
∑
e∈Nel

ETe DTx Λ(ωκ)DxEeu, (18)

where Nel = M × N × P is the number of elements in the
domain, Ee gathers the values within the support of element
e, Dx = {Di|i ∈ {x, y, z}} is the physical gradient matrix
on the element, and Λ(ωκ) is the “diagonal” operation of
multiplying by the quadrature weight and coefficient at each
quadrature point. To compute the physical gradient matrices
on isoparametrically mapped elements, one computes the
coordinate gradient ∇ξx = (Dξ ⊗ I3)(Ee ⊗ I3)x, where x is
the vector of coordinates at finite element nodes and Dξ is the
derivative with respect to reference coordinates. For notational
simplicity, we now elide tensorization with the 3×3 identity I3
when operating on vector-valued quantities. The quantity ∇ξx
can be interpreted as 3× 3 matrices at each quadrature point.
Inverting these and then taking determinants produces the
gradients∇xξ and quadrature weighting for physical elements.
For Q2 elements, the precomputed reference gradient matrix
Dξ is 81× 27 and is mapped to physical space via the block-
diagonal operation Dx = Λ(∇xξ)Dξ.

We now count data motion and floating-point operations
to compute the element action applied to a three-component
velocity. Visiting an element requires 8 · 3 scalars for coordi-
nates, 2 · 8 · 3 scalars for state and residual, plus 27 scalars
for the scalar-valued coefficient η. We use an explicit integer
representation for Ee, which requires an additional 27 values,
for a total of 1008 bytes that will never be reused. With
limited cache or a poor ordering of elements, this increases
to 2376 bytes. Computing the metric term ∇xξ requires
2 · 81 · 27 · 3 + 42 · 27 = 14256 flops, constructing Dx is
2·81·27·3 = 13122, and application of Dx and DTx each costs
13122 flops, for a total of 53622 flops. The arithmetic intensity
is thus between 22.5 (pessimal cache) and 53 (perfect cache)
flops/byte. This is well above that provided by hardware, so we
expect this operation to be compute-limited. By comparison,
an assembled matrix has 4608 nonzero entries per element,
leading to a data requirement of 37248 bytes with perfect
cache reuse for the vectors and implicit column indices. The
results are summarized in Table I. Evidently, any machine that

TABLE I
MEMORY AND COMPUTE DEMANDS PER ELEMENT FOR DIFFERENT

OPERATOR APPLICATION METHODS. ARITHMETIC INTENSITY IS
REPORTED AS FLOPS/BYTE, COUNTING ADDS, MULTIPLIES, AND DIVISION
(RARE) ALL AS 1 FLOP. “TENSOR” IS A MATRIX-FREE IMPLEMENTATION

THAT USES THE TENSOR PRODUCT STRUCTURE PRESENT ON THE
REFERENCE ELEMENT. “TENSOR C” ABSORBS THE METRIC TERMS INTO A

TENSOR-VALUED COEFFICIENT. AVERAGE TIME (MILLISECONDS) AND
GF/S ARE REPORTED FOR (PARALLEL) OPERATOR APPLICATION ON 8

NODES OF EDISON (3686 GF/S PEAK).

Operator Flops Pessimal Cache Perfect Cache Time GF/s
Bytes F/B Bytes F/B (ms)

Assembled 9216 — — 37248 0.247 42 113
Matrix-free 53622 2376 22.5 1008 53 22 651
Tensor 15228 2376 6.4 1008 15 4.2 1072
Tensor C 14214 5832 2.4 4920 2.9 — —

can perform 53622 flops (in the matrix-free element kernel)
in less time than it can stream 37248 bytes will exceed the
theoretical peak attainable using assembled sparse matrices.
Q2 elements have tensor-product structure that can be

exploited to reduce the number of operations by approximately
3× relative to the dense representation. The reference deriva-
tive matrix Dξ can be split into three pieces, D̂ ⊗ B̂ ⊗ B̂,
B̂ ⊗ D̂ ⊗ B̂, and B̂ ⊗ B̂ ⊗ D̂, where B̂ and D̂ are the
3 ⊗ 3 basis evaluation and derivative evaluation matrices in
one dimension. With this tensor product structure, Dξ can be
applied in 2 · 37 = 4374 flops, one third of that required to
apply it as an assembled operator. Since we cannot explicitly
form Dx, we must restructure our element kernel in Equation
(18) to take advantage of this savings:

Au =
∑
e∈Nel

ETe DTξ Λ
(

(∇xξ)
T (ωη)(∇xξ)

)
DξEeu. (19)

Counting flops, we apply Dξ or its transpose a total of three
times (3 · 4374 flops), compute metric terms at quadrature
points (42 · 27 flops), and perform 3 · 12 · 27 flops in the
quadrature loop, for a total of 15228 flops. Note that the metric
terms are now applied as part of the quadrature loop and that
we have removed the need to store an 81 × 27 matrix (17
kB). By removing the Dx matrix (which is different on each
element), multiple elements can be processed simultaneously
without spilling out of L1 cache. These low memory require-
ments enable simple vectorization over elements, for which we
consistently achieve greater than 30% of peak on AVX (Sandy
Bridge) and AVX+FMA (Haswell) CPUs. The efficiency of
matrix-free tensor-product formulations in linear solves has
been demonstrated for Q3 and higher orders [49] and forms the
basis for spectral-element methods [50], [51], but non-tensor
techniques are overwhelmingly common for Q2 and lower-
order elements. Spectral element methods typically perform
a further optimization of choosing Gauss-Lobatto quadrature,
for which B̂ is the identity. This reduces the flops in Dξ by
a factor of 3 but is not sufficiently accurate for our deformed
meshes with variable coefficients.

We note that a further rearrangement of Equation (19) is
possible and desirable in the case of anisotropic coefficients.



Fig. 1. Streamlines for a sedimentation example with Nc = 75 and Rc =
0.05. The streamline diameter is scaled according to the magnitude of the
fluid velocity. The viscosity contrast between the inclusions (blue spheres)
and the background material is ∆η = 104.

The product (∇xξ)
T (ωη)(∇xξ), even if η is tensor-valued, is a

rank-4 tensor containing 21 distinct entries (due to symmetry).
If this is stored, the data requirements for an element increase
to 2 · 8 · 3 + 21 · 27 = 4920 bytes (perfect cache) or
2 ·27 ·3 + 21 ·27 = 5832 bytes (pessimal cache), but the flops
are reduced to 2·4920+2·81·27 = 14214. This is little benefit
for the present problem, and we do not pursue it further;
but it is justified if η is anisotropic or for scalar problems
(for which coordinate transformations are disproportionately
expensive and anisotropy is only a rank-2 tensor).

IV. NUMERICAL RESULTS

A. Robustness

To investigate solver robustness, we consider a sedimen-
tation problem chosen as a more demanding variant of the
“sinker” problem in [29]. We populate the cubic domain [0, 1]3

with Nc randomly-placed nonintersecting spheres of radius
Rc. Flow is driven by density variations between the spheres
and background material. In Equation (1) the gravity vector
is taken as g = (0, 0,−9.8) (positive z-direction pointing
towards the free surface). The ambient fluid has viscosity
(∆η)−1 and density 1, while the spheres have viscosity 1 and
density 1.2. Slip boundary conditions are imposed at the walls
and a free surface at the top (z = 1). As shown in Figure 1 via
the streamlines, the flow pattern is complicated and nonlocal.
Unlike the case Nc = 1, the presence of many inclusions
prevents Krylov methods from accelerating convergence on
the test problem beyond that seen in realistic scenarios.

In the performance tests presented, we chose Nc = 8
and Rc = 0.1 and ran the solver over three time steps
(scientifically relevant sedimentation experiments would be
run for many steps). To explore robustness with respect to

Fig. 2. Convergence of full-space iteration in varying viscosity contrast ∆η.

coefficient contrast, we fix the spatial discretization at 643

Q2 elements and vary the coefficient contrast. We employ the
lower-triangular preconditioner (see Equation (17)) iterating
in the full space and use a single application of a V (2, 2)
cycle (one V-cycle employing two pre- and post- applications
of the smoother) of our geometric multigrid preconditioner to
define the action of J̃−1

uu . The geometric hierarchy contained
three levels, with the coarsest operator defined via Galerkin
projection. A single V (2, 2) cycle of a smoothed aggregation
based algebraic multigrid preconditioner (GAMG) is used
as the coarse grid solver. Both the geometric and algebraic
multigrid utilize a Chebyshev iteration, preconditioned with
Jacobi as the smoother on every level. At the coarsest level
within the algebraic multigrid preconditioner, the coarse level
solver was defined via a block Jacobi preconditioner, with an
exact LU factorization applied on each of the subdomains. (see
§ III-C for further details). All Stokes problems are solved
to an unpreconditioned relative tolerance of 10−5. Unless
otherwise stated, all numerical results reported have been
computed using 64-bit indices.

Convergence for the vertical momentum residual and pres-
sure (incompressibility) residual is shown in Figure 2. As is
typical with buoyancy-driven flows, the iteration starts with
a large vertical momentum residual and the pressure residual
must increase to the same order as the momentum residual
before the momentum begins to converge. As the contrast
∆η increases, these components take longer to equilibrate,
at which point relatively steady convergence is observed.
Replacing the momentum V-cycle with an accurate solve does
not significantly change this behavior.

Since the Schur complement preconditioner S̃ is spectrally
equivalent, we attribute the slow convergence to non-normality
of the preconditioned operator. Non-normality can be avoided
by using Schur complement reduction (SCR), at the expense
of accurate inner solves. This is usually significantly more
expensive but is more robust to extreme coefficient contrasts.



TABLE II
ALGORITHMIC SCALABILITY FOR DIFFERENT PROBLEM AND PARTITION
SIZES ON EDISON. THE ‘-’ SYMBOL INDICATES THE JOB COULD NOT BE

EXECUTED DUE TO MEMORY LIMITATIONS.

Grid Cores Its. Coarse solve Stokes solve (s)
Setup (s) Apply (s) Asmb MF Tens

643 192 112 0.5 1.2 40.1 26.9 14.8
963 192 110 1.3 4.0 - 90.6 50.6
963 1536 95 1.5 1.1 - 12.1 8.2
1923 1536 141 2.7 5.8 - 120.0 45.1
1923 12288 170 4.1 6.1 - 30.1 17.1

B. Scalability and efficiency

To investigate algorithmic scalability, in Table II we exam-
ine the number of iterations and CPU time (seconds) required
for convergence as the mesh size and core count are varied.
These experiments utilize for the same preconditioner and test
problem defined in § IV-A. The CPU time reported highlights
the time spent within the geometric multigrid coarse grid
solver (setup and application), as well as the time required
for a complete Stokes solve (time-to-solution) using SpMVs
defined via assembled matrices (Asmb), our reference non-
tensor matrix-free implementation (MF) and our tensor prod-
uct based SpMV (Tens). In general, the iteration counts are
found to slightly increase as either the number of elements
in the mesh, or the number of cores used was increased.
This is attributed to using a fixed number of levels (three)
within the geometric multigrid for all element resolutions
considered. Consequently, the coarse grid problem increases
in size as the mesh is refined, thus placing a higher demand
on the quality of the algebraically constructed coarse level
operators. As we will show in § IV-C, purely algebraic multi-
level preconditioners tend to require a higher number of
iterations to convergence. The overall speed increase obtained
from the Q2 tensor product implementation is a factor of 2.7
cf. the equivalent preconditioner using assembled operators,
and a factor of 1.8 compared with our reference SpMV
implementation. Importantly we note that the setup cost for
the algebraic preconditioner used as our coarse grid solver is
small (less than 5 seconds on 12k cores) and exhibits only an
increase in cost of 1.5×, over an 8× increase in the number
of processors.

Given a FE simulation containing E elements and executed
on C cores, we have chosen to measure the efficiency (or
computational scalability) in terms of elements per core,
per second (E/C/s). This combines both algorithmic scal-
ability (number of iterations independent of resolution and
parallelism) and implementation efficiency. Additionally, we
also report as performance measures GF/s and GF/s per
core (GF/C/s). In Table III, we summarize the performance
results around the threshold number of elements/core at which
communication becomes significant for two events within our
preconditioner. “MG res” represents the residual evaluation
performed at the finest level within the MG hierarchy and
reflects the performance of the SpMV implementation. “Stokes

TABLE III
EFFICIENCY FOR DIFFERENT PROBLEM AND PARTITION SIZES ON EDISON.

SEE TEXT FOR DEFINITIONS OF THE EFFICIENCY METRICS USED AND
EVENTS PROFILED.

SpMV Grid Cores MG res Stokes solve
type (E) (C) TF/s E/C/s GF/C/s GF/s

Asmb 643 192 0.1 46 0.9 173
MF 643 192 0.7 69 2.6 502
Tens 643 192 1.1 128 2.4 464

MF 963 192 0.8 58 2.6 499
Tens 963 192 1.0 103 2.6 447

MF 963 1536 5.0 47 2.2 3198
Tens 963 1536 6.6 72 2.2 2378

MF 1923 1536 5.3 46 2.5 3839
Tens 1923 1536 7.8 79 2.2 3303

MF 1923 12288 36.1 19 1.5 18499
Tens 1923 12288 35.3 26 1.1 12891

solve” represents the solution of the entire Stokes problem,
which includes application of the Krylov method and multiple
applications of the geometric multigrid preconditioner. We
observe that the matrix-free implementation (MF) is uniformly
faster than that of the assembled matrices (Asmb) and the
tensor-product formulation (Tens) is uniformly faster than the
(non-tensor) matrix-free implementation. Although the GF/s
for operator application is always higher for the tensor-product
formulation (not shown, see Table I), the tensor-product for-
mulation does fewer flops so the end-to-end solve GF/C/s
is lower. We find that at scale, both implementations of the
matrix-free SpMV which we utilize as the kernel within our
multigrid smoother yield a sustained performance greater than
35 teraflops per second. However, we note that the application
of the entire Krylov method results in a performance between
13 and 18.5 teraflops per second.

C. Performance comparison

To assess the performance of our matrix-free multigrid
implementation, in Table IV we compared the solve time
with several robust multi-level implementations which utilize
fully assembled matrices. The test problem consists of the
sinker model defined in § IV-A, with a mesh of 963 elements.
As before, the Stokes solution was deemed converged when
the initial unpreconditioned residual was reduced by a factor
of 105. Our reference matrix-free preconditioner (GMG-i)
consisted of a three level hierarchy with the coarsest operator
defined via Galerkin projection (see § IV-A for a full descrip-
tion). The following four preconditioner configurations which
exploit assembled operators were considered for comparison;
• GMG-ii The operator on the finest level was assembled,

and all coarse grid operators were defined via Galerkin
projection. The smoother and coarse grid solver used
were identical to GMG-i.

• SA-i The fine operator was assembled and GAMG
was used as the preconditioner. A thresholding value of
0.01 was used for constructing the aggregation graph.



The smoother used was identical to GMG-i. The coarse
level solver consisted of block Jacobi, with an exact LU
factorization applied on each of the subdomains.

• SAML-i Identical to SA-i except the smoothed aggre-
gation algebraic multi-level preconditioner ML [52] was
employed. A drop tolerance of 0.01 was employed in
constructing the prolongation operator. The maximum
size of the coarse level problem was set to 100, and
a repartitioning of the coarse level problem (defined
via ParMETIS) occurred if the number of equations per
subdomain was less than 512.

• SAML-ii Identical to SAML-i except a stronger
smoother and coarse level solver was employed. The
smoother consisted of FGMRES(2) preconditioned with
block Jacobi-ILU(0), and the coarse level solver was an
inexact Krylov solve (FGMRES) which was terminated
when the relative residual was reduced by a factor of 102.
The coarse level solver was block Jacobi, with an exact
LU factorization applied on each of the subdomains.

In Table IV we report the number of iterations and CPU
time (seconds) required for specific operations executed during
the solution of a Stokes problem. The operation “MatMult”
refers to the total CPU time spend performing SpMV, “PC
setup” represents the total time associated with setting up
all components of the Stokes preconditioner P, “PC apply”
represents the total time spent evaluating the action of P−1

(see Equation (17)) and “Solve” represents the complete time-
to-solution of the variable viscosity Stokes problem. Iteration
counts were found to generally be lower for the geometric MG
preconditioners in comparison to the pure algebraic precondi-
tioners. The GMG-ii preconditioner which utilized Galerkin
coarse grid operators on all levels (except the finest) exhibited
the lowest iteration count. However, despite requiring 23%
less Krylov iterations, the preconditioner which employed a
matrix-free tensor product SpMV yielded an overall time-to-
solution which was 1.7× faster. Compared to the algebraic
multi-level preconditioner configurations we considered here,
GMG-i was found to be between 3.3× - 12.4× faster. In
addition to the time reported under “PC setup”, the geometric
multigrid preconditioners required an additional 1.3 seconds
(GMG-i) and 3.2 seconds (GMG-ii) for the symbolic and
numeric phases associated with evaluating RTAR. Hence, the
setup cost of GMG-ii was comparable to the pure algebraic
approaches for the model resolution considered.

V. CONTINENTAL RIFTING AND BREAKUP

The breakup of continents occurs after a phase of continen-
tal rifting, in which the crust thins either over wide regions
or over narrow localized ones, thereby participating in the
diversity of passive continental margins. The processes that
lead to continental breakup are important factors influencing
the formation, maturation, and storage of hydrocarbons along
passive margins and thus are of economic interest.

Geologic records have revealed that when continents sepa-
rate, the propagation of breakup is highly time dependent [53].
Periods of quiescence propagation are usually associated with

TABLE IV
PROFILING OF DIFFERENT MULTI-LEVEL PRECONDITIONERS IN TERMS OF

THE NUMBER OF ITERATIONS AND CPU TIME (S). ALL SIMULATIONS
EMPLOYED A MESH OF 963 Q2 ELEMENTS AND USED 1536 CORES ON

EDISON. SEE TEXT FOR THE DEFINITION OF THE MULTI-LEVEL
PRECONDITIONERS AND OPERATIONS. TO ENABLE COMPARISON WITH
ML, ALL CALCULATIONS WERE PERFORMED USING 32-BIT INDICES.

Precon. Its. Operation (s)
type MatMult PC setup PC apply Solve

GMG-i 95 1.6 1.1 5.3 6.9
GMG-ii 72 1.6 1.4 10.4 11.7
SA-i 129 15.2 5.5 20.1 22.7
SAML-i 454 68.9 4.8 71.9 85.5
SAML-ii 239 40.0 6.0 62.3 68.5

large fracture zones and the formation of oblique margins.
Oblique structures cannot be simulated using 2D models.
Because of the computational challenges associated with
performing high resolution, 3D, nonlinear large-deformation
modeling of the lithosphere and crust, few such transient
simulations of continental breakup have been performed [54]–
[60]

A. Model description

The model domain we consider spans 1200 km × 600 km
in the horizontal direction (x-z) and 200 km in the vertical
direction (y). Together with the Stokes problem in Equation
(1) and (3), we additionally solve the energy equation

∂T

∂t
+ u · ∇T = ∇ · (κ∇T ) , (20)

where T is the temperature and κ the thermal diffusion.
Equation (20) is solved using Q1 finite elements, stabilized
via the SUPG method [61].

Initially, the model domain is divided into three regions
(lithologies) which we refer to as “mantle” (lower 160 km),
“weak crust” (20 km thick), and “strong crust” (20 km thick).
Material points are used to identify the different regions.
Associated with each lithology is a unique set of material
parameters. The flow used in each lithology consists of a
a temperature, pressure, and strain-rate-dependent viscosity
defined by an Arrhenius type law. The effective viscosity
involves a Drucker-Prager stress limiter that parametrizes
the brittle behavior of rocks in the two crustal layers near
the surface. All lithologies are assumed to have buoyancy
variations defined by the Boussinesq equations.

To initiate rifting, we introduce a small random material
heterogeneity, which can be thought of as a zone of pre-
defined “damage” (see Figure 3 - central zone along back
face). We utilized two types of boundary conditions: (i) purely
cylindrical extension of 2 cm/yr applied symmetrically in the
x-direction, and (ii) symmetric extension of 2 cm/yr applied in
the x-direction, together with a slight component of shortening
(2 mm/yr) in the z-direction, which is applied on the opposite
side of the damaged zone.

The simulation results presented were performed using 512
cores on “Rostand”, an SGI ICE 8200 with compute nodes



Fig. 3. Evolution of topography (H) and basin structures from a rifting
experiment ∼10 Myr after breakup has occurred. Upper panel outlines the
passive margins (topographic lows), which are accurately simulated via the
deformed free surface. Lower panel shows the second invariant of the strain-
rate tensor (eII), which highlights the complex geometry of cross-cutting
faults that intersect the isolated basin (front face). This simulation employed
2 mm/yr shortening which resulted in the development of oblique active
structures (denoted by yellow isosurfaces).

consisting of 2×6 Intel Xeon (Series 5600) cores running at
2.8 GHz. Each model utilized a mesh resolution of 256 ×
32 × 128 Q2 elements. Convergence of the nonlinear Stokes
problem was defined to have occurred when ‖F‖ < 10−2, or
when the initial nonlinear residual (redefined at each time step)
was reduced by a factor of 104. We restricted the nonlinear
solver to perform a maximum of five iterations. For the non
dimensional scaling we adopted, these nonlinear stopping
conditions proved effective for the transient rift problems
considered here (see Figure 4). We defined the action of
J̃−1
uu in Equation (17) via a V (3, 3) cycle. The multigrid

preconditioner was configured with three levels, using the
following element hierarchy (from the coarsest to the finest
level): 32× 16× 16, 128× 32× 64, 256× 32× 128.

We used a coarse grid solver consisting of an inexact Krylov
method (CG), preconditioned with an algebraically defined
additive Schwarz method (ASM). The ASM preonditioner
employed an overlap of 4, with subdomain solves defined
via a single application of ILU(0). The coarse grid solver
was terminated after 25 iterations, or if the initial residual
was reduced by a factor of 104. From our experience, using
ASM preconditioners for variable viscosity Stokes problems in
which the total number of cores (subdomains) is < 2-3×103,
will result in an efficient coarse grid solver. However, when
the numbers of cores (subdomains) becomes larger than >
4×103, we find ASM is inefficient, leading to coarse grid
solve times which are larger than the total time spent applying
the smoother on the finest level. This is in part associated
to (i) the poor algorithmic scalability of ASM and (ii) the
number of global reductions required by the Krylov method
which is applied to a fully distributed coarse grid operator
which possesses as many subdomains as the fine grid operator,
thereby exposing network latency. In such situations, where the
core count exceeds 2k, we find that coarse grid preconditioners

which are both computational and algorithmically scalable
(e.g. the smoothed aggregation based GAMG implementation
in PETSc) are essential.

In Figure 4 we summarize the performance characteristics of
the nonlinear solver and preconditioner configuration adopted
for the rifting experiments. As a function of each model time
step, we show the total number of nonlinear iterations (“Total
Newton” - green dots) required to ensure that ‖F‖ < 10−2,
and the total number of Krylov iterations required to solve
the linearized Stokes problem (“Total Krylov” - grey bars).
The average number of Krylov iterations per time step is
shown via the blue line. In the early stages of the simulation
(first five time steps), we observe failure of our nonlinear
solver, with more than five iterations being required. This is
attributed to rapid variations in the free surface (topography)
which occur due to an initial buoyancy structure that is out of
equilibrium with the initially horizontal topography. Once this
nonzero and dynamically consistent topographic surface has
been established, enforcing ‖F‖ < 10−2 is possible with 1-
2 Newton iterations. As time advances, damage accumulates
in the central region of the domain and shear zones, repre-
sented via rheological nonlinearities, become highly localized.
We note that despite the yielding condition (associated with
strain-rate and pressure dependent viscosity) being activated
throughout the entire simulation, we observe convergence of
the nonlinear Stokes problem in typically less than three
iterations.

Each model required approximately 1500-2000 time steps,
with the average CPU time per time step being ∼160-200
seconds. This average reflects the time required to: solve the
nonlinear Stokes problem; perform all nonlinear residual eval-
uations; interpolate between material points and the quadrature
points; the update of material point history variables (plastic
strain) and the coordinates; perform all mesh updates asso-
ciated with the ALE formulation; solve the conservation of
energy (Equation (20)) and to write any requested data to disk.

Our models on continental rifting confirm that a weak
lower crust favors wider passive margins and that a quiescent
period of propagation of continental rifting can be induced by
shortening in the direction normal to the ridge. These models
highlight that a very small amount of axial shortening also
induces obliquity and that the accommodation of this obliquity
by the mid-oceanic ridge or by the continental structures is
a strong function of the viscosity of the lower crust. A weak
lower crust favors margins that are oblique to spreading, while
a strong lower crust favors ridge jumps and transform margins.

VI. OUTLOOK

We have presented a practical geodynamics package using a
material-point method and stable, locally conservative, mixed
finite element discretization. By eschewing assembled sparse
matrices in favor of a matrix-free evaluation that exploits
tensor-product structure, the cost of applying the operator in
multigrid smoothing and residual evaluation was reduced by
an order of magnitude. With regards to time-to-solution, our



Fig. 4. Convergence behavior of the nonlinear and linear solvers used for
the rift model as a function of model time step. Green markers indicate the
number of nonlinear iterations required for convergence. The grey and blue
lines represent the total and average number of Krylov iterations (applied to
the Stokes operator) which were performed at each time step. Refer to text
for details regarding the solver/preconditioner and stopping conditions used.

combined Chebyshev tensor-product based SpMV smoother
is 2.7× faster than the equivalent algorithm using assembled
matrices. Compared to several purely algebraic multilevel
preconditioner implementations, our matrix-free approach was
found to be between 3.3× - 12.4× faster.

The performance of our nonlinear Stokes solver is now
compute-bound, rather than memory-bound. Thus we expect
the benefits to improve further if the hardware balance contin-
ues to skew toward flops over memory bandwidth. Avoiding
assembled matrices also reduces memory requirements, thus
increasing the maximum problem sizes that can be solved
and increasing the utility of low-memory energy-efficient
architectures.

We believe that algorithmic restructuring similar to the
present work will improve performance and efficiency for
many applications that currently rely on assembled sparse
matrices. The greatest challenges will be in (i) finding methods
that are amenable to matrix-free implementation and converge
as rapidly and reliably as the best matrix-based algorithms and
(ii) finding good interfaces to minimize coding effort required
for applications to experiment with these methods.
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